
c© Copyright IFAC
8TH IFAC SYMPOSIUM ON COST ORIENTED AUTOMATION

Affordable Automation Systems
Ciudad de la Habana, Cuba, 2007

TOWARDS USAGE OF COMBINED EXERCISES
IN LEARNING OF LOW COST CONTROLLERS

Richard Šusta ∗∗ Jan John ∗

∗ DCE-Prague: Department of Control Engineering,
Faculty of Electrical Eng., Prague, Czech Republic

susta@control.felk.cvut.cz
∗∗ DCE-Prague, john@control.felk.cvut.cz

Abstract: The paper outlines our experience with combined educational exer-
cises consisting of virtual and physical parts and they are suitable for training
courses of low cost programmable logical controllers (PLCs). First of all, we
introduce our training approach based on utilizing real PLCs connected to
software simulations of industrial processes. The simulation offers possibility
to select the complexity of a controlled task, e.g. a presence of random mal-
functions. Tutors assign proper grades to students according to the quality of
their programs but their testing often leads to time-consuming operations. For
simple educational tasks, we have made successful experiments with formal
methods based on partial search of state space of automata, which we present
in the second part of the paper. Finally, we consider possible applications of
our approach for a remote learning.
Copyright c© IFAC 2006

Keywords: control program, programmable logical controllers, PLCs, formal
methods, case study, soft-commissioning, remote learning

1. INTRODUCTION

It is beyond doubt that experience is the best
way to improve our programming skills. Ad-
ditionally, programs themselves are sometimes
considered as a coding of experience. In train-
ing laboratories, students may gather both ex-
citing and practical knowledge along with solid
preparation for their later successful careers.
Laboratory workplaces can be equipped by ei-
ther physical or virtual exercises.

1 This work was supported by FRVŠ 2150/2005 project
and by euSophos 2C06010 project granted by Ministry of
education.

Physical control exercises offer many unsub-
stitutable gains in terms of illustrative clear-
ness and motivations. However, they are typi-
cally static in structure and unfortunately de-
structible. Therefore, they always need robust
”student-proof” constructions, and also a re-
peatable behavior that minimizes operational
and maintenance costs. To satisfy all condi-
tions, these exercises are often based on sim-
ple physical models that represent rather aca-
demic processes.

On the contrary, virtual control exercises can
even supersede real processes because they of-
fer safe simulations of destructive accidents
caused by possible improper control actions.

Optoisolated
PCI-1750
I/O card

Development tools
and / or

virtual models

COM port
PC computer

Student’s workplace

C
on

ve
rt
or

 o
f

I/O
vo

lta
ge

le
ve

ls

Low cost PLCs

O
P

C
 s

e
rv

e
r o

r D
L

L
lib

ra
ry

Input and
outputs
either

24V or 5V

Fig. 1. Workplace organization

However, virtual models have at least one ma-
jor drawback that will be probably never im-
provable — users do not operate them directly
and it has impact on the amount and type of
information gathered.

Several commercial products exist for strictly
virtual education where computers emulate
whole feedback loops, i.e. technology processes
and controllers (for example Automation stu-
dio). Such approach offers cost effective and
very flexible way, but too virtual, especially for
beginners without practical experience.

Combined exercises, i.e. exercises consisting of
physical and virtual parts, could represent a
middle course. The question is how to demar-
cate the two parts.

Our approach, depicted in Figure 1, differs
from strict virtual reality by physical PLCs,
which are fully new control elements for begin-
ners in industrial control technologies, whereas
PC simulated processes are mainly taken from
everyday life. Thus every student workplace
represents an analogy to a remote control

where responses of a distant process are only
monitored, for instance by web cameras.

Students work with real PLCs and see their
input and output signals, either 24 V industrial
I/O or 5 V logic circuits. These signals are
converted to voltage levels of standard I/O PCI
cards. To protect PC computers as much as
possible, we have employed PCI-1750 cards
with 16 inputs and 16 outputs that are all fully
independent and optically isolated.

Our older models communicate with PCI-1750
cards via a DLL library, which is supplied by
PCI-1750 manufacture, and more recent mod-
els prefer more flexible OPC server created for
these purposes. Development environments for
programmable logical controllers can certainly
run on the same or different computers, as re-
quired.

The experience from last years shows that stu-
dents like our combined exercises, not only for
attractive design, but also for their better us-
ability. Our approach offers many pedagogical
contributions:

• Students concentrate more on control op-
erations, which is a primary goal of our
training course. They have no trouble with
bothersome mechanical malfunctions be-
cause simulated models are always in a
perfect shape.

• Students train their skills to manipulate
properly with real PLCs.

• All consequences of wrong programs are
shown on simulations, including crashes
and destructive accidents.

• The use of laboratory equipments is bet-
ter. Each of ten work places in our labo-
ratory can operate with any virtual indus-
trial process, which reduces sharing prob-
lems with reservations of hardware equip-
ments.

The popularity of combined exercise is also con-
firmed by the fact that some students volun-
teer to design and to program new models as
their individual projects in higher classes. Up
to now, they have built nine virtual models. It is
possible to control five of them by low cost PLC
controllers; the remaining models are directed
to advance courses.

1.1 Testing of Student Programs

We try to automate the validation of student
works for many reasons, but mostly to improve
the quality of education. Erroneous student
programs frequently pass simple tests and
fail only in situations that are more complex.

Their manual in-depth ”commissioning” leads
to a time-consuming and boring procedure. Our
semi-automatic tests of the programs can be
divided into two cases: a soft-commissioning
and a partial verification.

The soft-commissioning means debugging a
real PLC program with the aid of the virtual
model, which practically leads to testing of a
proper behavior of a control program by the
sequences of events generated by the model.
The soft-commissioning is quite illustrative
and students usually perform it by themselves;
on the other hand, such tests are slow down by
responses of models and PLCs, thus, the main
question is how to select proper test scenario.

The partial verification can reveal more errors.
It begins by converting the PLC program into
some automaton and closing feedback loop by
adding controlled model. Finally, required cri-
teria are checked by NuSMV model checker
Cimatti and at al. (2002). We chose only partial
searches because well-known state explosion
problems frequently occur even when verifying
seemingly simple programs.

Automatic tests of programs have several ped-
agogical contributions:

• Students must write good programs. There
is no space for any tricks how to persuade
their tutor to give them grades for par-
tially functioning programs.

• Tutors can concentrate more on tech-
nical details because they do not lose
time with exhausting tests that should be
completely repeated after correcting each
found bug.

2. THEORETICAL MODEL OF COMBINED
EXERCISES

In this section, we will create a theoretical
model for our combined exercises. We present
conditions that allow representing the virtual
model of an industrial process P as an untimed
finite state machine even if it simulates a com-
plex hybrid timed process.

A virtual process P is simulated by a PC com-
puter. It generates input events x ∈ X for a
tested control program C that runs on a PLC,
see Figure 2. Control actions u ∈ U outputted
by C are processed in several P blocks, which
we include in the following quadruple:

P df
= 〈M,R,J ,D〉

where

x u

k

s

Input events Control actions

M - state machine

P - virtual processP - virtual process

C - control programC - control program

J - judgement

block

R - test

supervisor

L s and
statistics
og

s 0

l ow

s 2

h igh

s s

s

1 3

4

s peed

P

L

C

P

L

C

D - drawing

pmp

swr, speed

high

low

Q1

Q2

RS
&

RS

B001B001

B05/1

B002
B07/1

&

Fig. 2. Virtual process and tested program

• M represents some state machine, usually
a timed hybrid automaton with some finite
set S of discrete states.

• R supervises M. It detects states that
violate specified by safety properties and
modifies M behavior by blocking or en-
abling some transitions to next states ac-
cording to a momentary performed test
scenario. Its current k ∈ K output serves
as a supplementary control input signal.

• J judgment block measures the quality
of C control by some given criteria and it
provides statistic data. In our models, J
also creates C behavior log, so operators
can be temporary absent when running
long tests.

• Finally, D drawing unit animates the be-
havior of M and creates illusions of con-
trolling of some distant industrial process.

If we represent M as a hybrid timed automa-
ton, or eventually as a hybrid timed Petri net,
we will obtain very accurate model, but with
less decidability. Therefore, we describe P as a
binary finite automaton, which is possible due
to the following facts:

(1) C runs on a classical PLCs that operates in
the well-known cyclic manner, which con-
sists from 3 phases, see Figure 3: sampling

PLC scan

P
r o g r a m s

c a

n

I n p u t s ca n

In p u t s ca n

Ou tp u t s ca n

Ou tp u t s ca n

Pr ogr a m sc a n

In
p

u
t

 i
m

a
g

e
o

f
 x

O
u

tp
u

t im
a

g
e

o
f u

C - control

program
calculates

outputs

x ∈ X u U∈

sampling of I/O

Fig. 3. PLC cycle

inputs, executing C program, and writing
outputs to peripherals.

(2) Low cost PLCs utilized in this training
course (Siemens LOGO! OBA3) have few
inputs, output, and they operated in rela-
tively long scan cycles. Their I/O sampling
has nearly regular 1 second period.

(3) Our exercises are based on models with
short delay or waiting times, at most 10
seconds, because we train programming
skills, not a patience waiting.

All responses of P are sampled by PLC scan,
therefore, M operations can be modeled as a
synchronous automaton performing an anal-
ogy of PLC scan cycle where times are con-
verted into sequences of transitions to next
states.

M behavior consists of several mutually un-
synchronized automata, which proper synchro-
nization is solved by students in C programs as
an integral part of training exercises, as also
indicated in Figure 2.

A composition of all partial automata into one
huge finite state machine would neither ex-
press internal architecture of P, nor it would
reflect utilized testing procedures. We base on
definition on a network of automata.

Let us write I for the set of all integer numbers,
∀i ∈ I; i > 1, and

α(B)
df
= {0, 1}|B|

for a Cartesian product where B is any fi-
nite nonempty ordered set of binary variables.
We utilize ΠnQi as abbreviation for Cartesian
product of some non empty finite mutually dis-
junctive Qi sets:

ΠnQi
df
= Πn

i=1Qi = Q1 ×Q2 × · · · ×Qn

where i, n ∈ I, i ≤ n and j 6= k always implies
Qj ∩Qk = ∅,∀Qj , Qk ∈ ΠnQi.

We will write ∆(τ , B) for a latched memory set
that stores current values of B variables when
τ = 0, and it holds their values if τ = 1. It

behaves as a set similar to B, |B| = |∆(τ , B)|.
The memory can be constructed as an output of
proper automaton, but let us omit its definition
for abbreviations.

First we define finite synchronous state ma-
chine (FSSM), which transitions are enabled by
external binary clock τ , as a quadruple

G(τ)
df
= 〈D,Q, φ(τ)〉

where D and Q are a nonempty finite ordered
sets of binary input data and states. To abbre-
viate definitions, let us suppose that Q also
contains some predefined initial state. Map-
ping φ(τ) is specified by:

φ(τ)
df
=

 α(∆(τ , D))× α(∆(τ , Q)) → α(Q)
if τ = 1

q → q,∀q ∈ Q otherwise

In the words, any transition to next states
occurs only if τ signal equals to 1, otherwise
G(τ) remains in its current state.

Because all transitions depend only on values
that were stored when τ = 0, G(τ) performs at
most one transition on τ = 1. It is our main
reasons for its definition.

We define a finite nonempty set of FSSMs as

Γ(τ,D,ΠnQi)
df
= {Gi(τ) 〈Di, Qi, φi(τ)〉 ; i = 1..n}

where i, n ∈ I, i ≤ n, Di ∈ D are input data
sets, and Qi are mutually disjunctive finite sets
of states.

We have utilized Cartesian product to empha-
size that all decisions inside model will be are
derived from the states of individual automata.

Finally, we have all construction necessary for
network of unsynchronized FSSMs. We define
N as tuple:

N df
=

〈
τ, U,Γ(τ, U ∪K, Ŝ), R(Ŝ,K), X, ω

〉
where

• τ is an binary internal clock;
• U is a finite nonempty ordered set of bi-

nary variables that represent inputs of N;
• Γ is a finite nonempty set of FSSMs, which

was presented in the previous definition.
• Ŝ denotes the set of vectors created as

Ŝ = ΠnQi Cartesian product of Γ states.
• R(Ŝ,K) supervisor calculates blocking or

enabling conditions according to a given
criteria and test scenarios.

• Finally, X is a finite set of binary outputs
to external systems created by ξ mapping
ξ : Ŝ → α(X).

Notice, each FSSM in Γ performs at most one
transition on τ = 1 that is determined by data

Too long
capping

Tester
of caps

Capper
machine

Bad cap Testing
no bottle

Operator
confirmed

error

New bottle

Bottle line on

Indicator

Bottle in position

Human
attention
required

Fig. 4. Example: Capping line in manual mode

latched when τ was 0. Thus, while τ = 1, no
FSSM can influence other elements of Γ.

The previous definition allows building bi-
nary untimed analogies of some hybrid sys-
tems. Resulting models are easily expressible
in NuSMV checker language, which was our
main reason for building N representation by
an unsynchronized network of FSSMs.

2.1 Example: Capping line

We demonstrate our approach with the aid
of a capping line, see Figure 4. Its virtual
model simulates a simple assembly operation
suitable for learning purposes.

A bottle moves on a conveyor and its posi-
tions are indicated by two sensors, at a cap-
ping machine and at a tightness tester. Each
bottle firstly slides from left chute. When the
bottle arrives below the capper, the conveyor
is stopped and 2 second capping phase be-
gins. Capped bottle is moved to the tightness
tester, where 5 second checking operation is
performed . If it was successful, finished bot-
tle continues towards the right chute, where it
disappears.

Bad bottle is moved back below the capper,
where one attempt of its recapping is per-
formed followed by new tightness test. If the
test fails again, the wrong bottle is rejected.

Figure 4 shows the screen shot of our vir-
tual model (programmed in C# language). The
model was switched into a manual mode,
where it is possible to add more bottles. How-
ever, the exercises given to students suppose
that only one bottle moves on the conveyor,
because our low cost PLCs are not capable to
control operations that are more complex.

The model indicates also erroneous control ac-
tions, some of them are depicted on Figure 4. In
addition to already mentioned bad capping, the
model simulates jamming of bottles. Because
there are no sensors indicating such accidents,
students must detect too long transport times
between the places. It is a general practice in
industry applications for substituting of expen-
sive additional sensors.

NuSMV model checker allows only finite types.
Therefore, position variables and delay times
are quantified to enumerated types. The bot-
tle position was quantified to 16 levels. For
time variables, we have chosen the scale of 1
second as 1 state transitions that corresponds
to LOGO! scan. We have selected 4 states for
the capper and 8 states for measuring test-
ing phase (to add possibility of erroneous over-
runs).

In NuSMV, we utilize enumerated types, e.g.
capping time will be VAR captm : 0..7;. Internal
clock τ is a Boolean variable that periodically
flip-flops: next(tau) := !tau;. The capper was
expressed by one FSSM machine with variable
qcaptm : 0..7; as capping time memory. It gives
the following NuSMV code:

init(captm) := 0;
init(qcaptm) := 0;
next(qcaptm) :=
case
!tau: captm;
1: qcaptm;

esac;
next(captm) :=
case

tau & runcapper & (qcaptm¡7) : qcaptm+1;
tau & runcapper & (qcaptm = 7): 7;
tau & !runcapper & (qcaptm>0) : qcaptm -1;
tau & !runcapper & (qcaptm=0): 0;
1: captm;

esac;
The whole model is easily built in similar
way as several independent processes. They
are supplemented by R(Ŝ,K) supervisor, which
consists of logical conditions for detecting er-

rors, for instance if runcapper reaches state
greater than 3 (it will run more than 3 sec-
onds), then the bottle is broken.

2.2 Example of Verifications

Here, we present the verification of one stu-
dent’s program that controlled the capping
line. The program contained 52 logics blocks
and five timers with time constants in seconds.
It utilized five bit inputs, 6 bit outputs, and
three internal flags. LOGO! program (stored
in ladder diagram format) was transformed by
our external tool into a NuSMV input file and
was joined with our prepared model of the cap-
ping line. Its timers were replaced by corre-
sponding finite state machines.

We verified the states of bottles at right end
of the conveyor, if they are capped, prop-
erly checked, and unbroken. Unbound verifica-
tion created the state explosion problem and
NuSMV run had to be aborted. A bounded
check found counterexample after 19 minutes
when checking the model with bound 123.

Of course, there are many possibilities how to
improve the conversions of PLC programs into
more effective NuSMV models.

3. CONCLUSION AND FUTURE WORK

In this paper, we have presented probably fully
new contribution to software testing based on
”PLC scan” conversion of a nondeterministic
hybrid timed automaton into deterministic au-
tomaton. Unfortunately, this method is appli-
cable only to narrow set of educational task
running on slow low cost PLCs.

In any case, our work may be considered as a
suggestion for similar studies, especially for re-
mote learning, which is one of main topics sup-
ported by our long term project. Students will
debug their codes in combined exercises with-
out risks of damage. The soft-commissioning
and partial verifications can either draw stu-
dent’s attention to errors or serve as a basis for
giving grades.

Eventually, PC simulations in combined exer-
cises can also mirror physical models to pro-
tect their construction against shock stresses
in extreme states. After control programs have
successfully passed all tests, their I/O signals
are connected to real systems.

4. APPLIED METHODS AND RELATED
WORKS

We surveyed many related works in this area.
Some of them have dealt with similar prob-
lems, but we have found out no paper that
specialized in low cost controllers with long
scan cycle, which brought new possibility how
to simplify validation of programs. For com-
pleteness, we mention some papers in soft-
ware testing that deal with similar problems.
An overview of software testing can be found
in Muccini (2002). The verification of stu-
dent programs utilized by Vienna University
of Technology is presented in Legourski et
al. (2005), but the authors specialize in At-
mel ATmega128 microcontrollers, which re-
quire different methods than slow PLCs. Our
soft-commissioning is based on data flow tech-
niques are described in Tretmans and Belin-
fante (1999), Hong et al. (2003), and Bernardo
and Inverardi (2003). Their results are par-
tially similar to simpler R approach presented
in this paper, but they are based on different
sets of states.

REFERENCES

Bernardo, Marco and Paola Inverardi (2003).
Formal methods in testing software architec-
tures. In: SFM. Vol. 2804 of Lecture Notes in
Computer Science. Springer. pp. 122–147.

Cimatti, A. and at al. (2002). NuSMV 2: An
opensource tool for symbolic model check-
ing. In: Proceeding of the 14th International
Conference on Computer-Aided Verification
(CAV’2002).

Hong, Hyoung Seok, Sung Deok, Insup Lee,
Oleg Sokolsky and Hasan Ural (2003). Data
flow testing as model checking. In: Proceed-
ings of Internal Conference on Software En-
gineering (ICSE’03), Portland, Oregon.

Kovchegov, Vladislav B. (2005). Modelling
of human society as a locally interacting
product-potential networks of automata. In:
The 7th Understanding Complex Systems
Symposium. University of Illinois.

Legourski, V., Ch. Trödhandl and B. Weiss
(2005). A system for automatic testing of
embedded software in undergraduate study
exercises. SIGBED Rev. 2(4), 48–55.

Muccini, H. (2002). Software Architecture
for Testing, Coordination and Views Model
Checking”. PhD thesis. Universita degli
Studi di Roma.

Tretmans, J. and A. Belinfante (1999). Au-
tomatic testing with formal methods.. In:
EuroSTAR’99: 7 European Int. Conference
on Software Testing, Analysis and Review,
Barcelona, Spain.

