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Abstract: The paper discusses the conversion of PLC (programmable logical
controller) programs into forms suitable for their emulation by any software tool
that includes some programming language capable of evaluating mathematical
formulas, if-then instructions, and time tests, in the case of timers. The method
offers advantage of low cost portability into a whole range of environments because
it does not require the embodiment of large additional programming support for
the simulation of various PLC instructions. The conversion, either of whole PLC
program or its part, can also be utilized for auxiliary tests when a finished PLC
program is transformed into a new hardware. Copyright (© IFAC 2004
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1. INTRODUCTION

Some PLC emulators are offered by their manu-
factures, ! the others were written by third par-
ties for special purposes, e.g. COSIMIR Freund et
al. (2001). Such standalone tools usually perform
very accurate simulations of PLCs including their
time characteristics, but ordinarily, they can be
embedded into another program only by limited
or by complicated non-standard ways.

Before discussing the emulation itself, we first
consider source codes of PLCs. The part 3 of
TIEC1131 standard, IEC (1993), defines a suite of
programming languages recommended to be used
with PLCs:

(1) Structured text — textual language with
PASCAL like syntax and functionality;

1 For instance, Allen-Bradley sells emulators for its PLCs,
but they only simulate PLC processors, so appropriate
RSLogix development environments are also necessary for
monitoring programs downloaded into emulated PLCs.

(2) Instruction list — language resembling a typ-

ical assembler;

(3) (a) Ladder diagram — graphical language
that appear as a schematics of the relay
diagram; and

(b) Function block diagram — graphical lan-
guage resembling a logical schematics.

The structured text could the best source for
emulations, unfortunately, few PLCs offer it. In
contrast, the both graphical languages, which are
implemented in a great number of PLC types
almost exactly according to IEC 1131 specifica-
tions, only visualize internal PLC codes. Thus an
instruction list ordinarily remains only one source
for any PLC emulation.

Although many PLC types exist with various con-
figurations, the number of their different instruc-
tion lists is much smaller due to backward com-
patibility of their software. For instance, Allen-
Bradley’s PLCs from families PLC-5, SLC-500,
MicroLogix, and ControlLogix utilize similar in-
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Fig. 1. Assignment z = x A =y in ladder diagram

struction lists, characterized in a lot of common
features, which can be considered as belonging to
one ’language group’. The rung of PLC ladder
diagram depicted in Figure 1 corresponds to the
source code "XIC x XIO y OTE 7’ in all men-
tioned PLC types.

If we define z,y,z variables and write proper
emulation functions for all used PLC instructions,
the rung above can be emulated by calling three
functions, for instance: ”FnXIC(z); FnXIO(y);
FnOTE(z);”. Such approach also allows modeling
execution times of PLC instructions (if required)
but it leads to long programs with many excessive
calls, although the rung above can be emulated by
one assignment z =z A -y .

Assignments can emulate only pure control algo-
rithm, but it is all we really need in many cases,
and besides they are portable across whole range
of programmable tools as a low cost emulation.

We based the conversion of PLC programs on the
theory of the transfer sets that was originally de-
signed for APLCTRANS algorithm Susta (2003).

The emulation does not require the composition of
whole PLC program into one automaton — every
PLC rung (or PLC program block, respectively)
can be converted into a separated statement.
Therefore, it is possible to process a wider range
of operations over APLCTRANS. 2

2. OVERVIEW OF TRANSFER SETS

Here, we outline the transfer set theory adapted
for a PLC emulation. In short, the theory formal-
izes concurrent evaluations of several expressions
all at once. Suppose having variables x,y and C
language assignments ”x = 2xx; y = x+1;”. Their
classical consequent evaluation yields "y = 2+ x4+
1;” for y variable, but their concurrent evaluation
(utilized by the transfer sets) gives "y = x+1;” be-
cause z,y variables were assigned after evaluating
the both expressions, thus the result corresponds
to the program: "temp, = 2 x x; temp, = v + 1;

2 APLCTRANS (Abstract PLC Transformation) was cre-
ated for the verification of PLC programs. It performs an
associative composition of some subset of PLC instructions
into mathematical formulas and converts PLC program
without loops in linear time in the size of its source codes
at the most cases, though the program has an exponential
complexity of its execution time. It was also proved that a
PLC program can be modeled by a automaton of Mealy’s
family if and only if its operations are expressible with the
aid of the instructions that are allowed by APLCTRANS.

x = temp,; y = temp,;” where temp,, temp, are

some temporary variables.

Transfer sets transparently specify complex trans-
fer operations with program states. For instance,
”push x” on an evaluation stack e, ez, e3 corre-
sponds to three concurrent assignments "e; = z;
es = e1; es3 = e3;” — notice that they may be
listed in any order.

To reduce the size of this paper, we only present
a rough definition of PLC storage and we replace
the exact syntax of t-assignment expressions by
the assumption of their similarity to C language,
including ? : construction for the conditional as-
signments, but omitting pointers, ++ and - -
operators. We hope that these short cuts do not
confuse readers.

The conversion requires unambiguous relation be-
tween variables and memory. Let R be a set of
PLC variables. If a boolean variable b € R is
mapped to I : 1/0 bit address (the least significant
bit of I : 0 input word) and an integer variable
w € R is mapped to I : 0 word address then the
both variables share I : 1/0 bit. We exclude this
case by defining PLC storage.

Definition 1. (PLC storage). Let S be a set vari-
ables of a PLC. We will suppose that some given
mapping of S into PLC memory is always firmly
associated with S. Let x € S be any variable. The
value of x evaluated with respect to S and to its
mapping will be denoted by [z] S. S is called a
PLC storage if [z] S does not depend on [y] S
for all possible contents of S and for arbitrary
variables x,y € S such that x # y.

Let us write EXP(S)T for the set of all mean-
ingful expressions over a given PLC storage S,
i.e., their evaluation is known. EXP(S)" is non-
empty because it contains at least numerical con-
stants. If two (possibly different) expressions sat-
isfy [exp,] S = [exp,] S for all contents of S, we
will write exp; = exp,, otherwise exp; # exp, .

Definition 2. Let exp € EXP(S)™ be any expres-
sion. The domain of exp is defined as:

dom(exp) & {v; € S| v; is used in exp}

Definition 3. (T-assignment). Let S be a finite
non-empty PLC storage and v = [ezp] S be the
assignment of exp € EXP(S)" value to v € S
variable. We define:

] exp] = [exp] S
dom(d]exp]) g dom(exp)
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co(dexp]) = v



where o[ezp] is called a t-assignment, and nota-
tions dom(d[exzp]) and co(v[exp]) stand for its
domain and codomain. If exp = v, then v[exp]
is called a canonical t-assignment. The set of all
t-assignments for S variables is denoted by 7 (5).

We have labeled t-assignments according to vari-
ables, but hat-accented, i.e., x variable has & t-
assignment. We will also hat-accent all further
objects related to t-assignments and our momen-
tary assumptions about t-assignments will be ex-
pressed by their following forms:

Z[exp] represents a fully defined t-assignment for
x variable with exp expression,

Z[x] stands for the canonical t-assignment for
variable, and

Z denotes any t-assignment for x variable with an
arbitrary exp € EXP(S)*T .

T-assignments can be primed or subscribed, so 7;,
£, and g represent t-assignments for three (possi-
bly different) variables z;, ;, and y. If we need to
distinguish among several t-assignments for one
identical variable, we will always write them in
their full forms — symbols Z[ezp;] and Z[exp,]
stand for two (possibly different) t-assignments for
one x variable. The equality of t-assignments is
determined by belonging to the same variable and
their equivalent expressions.

Definition, 4. Let Z[exp,],g[ezp,] € 7(S) be
two t-assignments. Binary relation & = g is de-
fined as the concurrent satisfaction of two follow-
ing conditions: co(#) = co(g) and exp, = exp,. If
= relation is not satisfied, we will emphasize this
fact by & # ¢ .

Lemma 5. Binary relation = on set 7(S) is an
equivalence relation.

Definition 6. (Transfer Set). A transfer set on S
storage of a PLC is any subset X C 7(S) that
satisfies for all 25,2, € X that co(#;) = co(d;)
implies ¢ = j. We denote the set of all transfer
sets for S variables by S(9), i.e., X € §(9).

In other words, any transfer set contains at most
one transfer function for each variable in S. The
composition of transfer sets is based on the con-
current substitution defined here as a mapping
from variables in S to terms of EXP(S)™.

Definition 7. Let X € 8(S) be a transfer set
and exp ., € EXP(S)" be any expression. Con-
current substitution X ~ exp gosr 18 defined as
such operation whose result is logically equivalent
to the expression obtained by these consecutive

steps:

(1) For all #;[exp,] € X:
while z; € dom(ezp,.,,), this z; occurrence
in expy.,; is replaced by some not inter-
changeable reference to x;, where x; repre-
sents co(Z;[exp;]).

(2) For all #;[exp,] € X:
while the result of the previous step (modi-
fied expression exp,.,,) contains a reference
to x; = co(d;[exp;]) then x; reference is
replaced by ”(exp;)” i.e., the expression of
Z;[exp;] enclosed inside parentheses.

Example 8. Given concurrent substitution:

{2[z Ayl gl A -y}~ e(x Vy) Aa]
Direct application of the first step described in the
definition above yields

ef@v iy nil

where underlining emphasizes that we have re-
placed variables by some unique references to the
t-assignments that are not be their identifiers. The
second step yields

(@ Ay) Vv (mz A —y)) Az Ayl
but another acceptable results are also

fla=y)n(zry)] or éfzAy]
because all expressions in three last t-assignments
are equivalent.

Definition 9. (Weak composition). A weak com-
position Z = X oY of two given transfer sets
X,Y € §(9) is the transfer set Z € S(95),|Z] =

~

|)/f|, with t-assignments #; [exp, ;| € Z that are
constructed for all #; [ezp, ;] € X as:

fi[[expzyi]] = z; [[}7'\» expm’i]]
where i € I, [I| = |X|, T = {1,2,...,|I|}.

Ezample 10. Let S = {b, x,y, z} be a PLC storage
then the week composition of two given transfer
sets is:

60 :ag 061
={&lz* —yl} o {&[z/y],9[b 7y : 2]}
={2[(z/y) * =(b 7y : 2)]} (1)

Lemma 11. The weak composition o is not asso-
ciative on S(S).

Weak composition 52 051 can be modified to asso-
ciative one, which we denote by @, if we extend the
leftmost transfer set Cy before any composition by
adding canonical t-assignments for all S variables,
whose t-assignments are missing in the transfer
sets. Let us write TS for the extension operator
described above, then C} = Cy 1.5 always satisfies
[Cof = [S] .

After the composition, all canonical t-assignments
are removed by the compression operator |, so the
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Fig. 2. Array versus graph implementation

associative compositions is defined as:

Co0C =((Ca18)oCh) |

The exact definitions are not too complex, but
they need many auxiliary specifications. Thus we
replace them by the following example. Readers
may find the definitions including proofs and
further details in Susta (2003).

Ezample 12. We take PLC storage S = {b, z,y, z}
and transfer sets from Example 10.

~

C:62©61 = ((62T 5) oéﬁ)l
_ ((62 U (B8], 9yl . £[21}) o 51) l
- ({Bubﬂ &z —y], 9ly] 72[[?3]]} ° 51)) !

= (Cou{bml. ol 7y : 2] . 2[=1} ) o
= (/) s~y b7y} (2)

Notice that C' in Equation 2 differs from C, from
Equation 1 only by the presence of § t-assignment.

2.1 Implementation of transfer sets

When transfer sets are stored as numeric arrays,
the top part of Figure 2, each variable is coded
as a unique number with the size according to
requisite number of variables. The arrays have
very simple implementation, but drawback in the
multiplication of expressions. Each composition
replaces every occurrences of one variable in the
expressions by new string, which gradually in-
creases the sizes of arrays.

The second proposed implementation utilizes the
structure similar to Binary expression diagrams
(BEDs), e.g. Andersen and Hulgaard (1997); Hul-
gaard et al. (1999), where logical subexpressions
are not repeated, but shared, bottom of Figure 2.

Nowadays transfer sets are implemented only with
the aid of byte arrays. New graph based version is
under development and is expected to be available
by the end of 2004.

3. CONVERSION OF PLC PROGRAM

This sections describes the steps necessary for
converting a PLC program. First, we outline the
conversion of PLC instructions to transfer sets,
then we will illustrate the method by an example.

The simplest way of the conversion represents
composing each rung, or a program block re-
spectively, to one transfer set Cj, for i = 1 to
count_of _rungs, and converting C; into program-
ming statements of required language. Because
one transfer set describes the concurrent assign-
ments, we must convert t-assignments to pro-
gramming assignments with the aid of temporary
variables outlined at the beginning of Section 2 on
page 2.

The composition is very fast operation, so we can
also try composing two or more following C; one
transfer set and then we select combination with
lesser size of final source code.

The transfer sets for basic PLC instructions are
listed in Susta (2003) for some PLCs of Rockwell
Automation (Allen-Bradley) and Siemens. These
PLCs have instructions lists, where conditions
are stored in f,, boolean register and rung is
evaluated with the aid of a boolean evaluation
stack with limited depth.

Some transfer sets for PLC instructions are also
presented in the example in Section 4.

3.1 Conwversion of arithmetic instructions

Arithmetic instructions of PLC correspond to a
conditional assignment Z[ fre,?exp : x], where exp
describes the operation and =z € S specifies a
destination address. The assignment is evaluated
as "if(freg) * = eap; else x = x;” imaginary
program. In the case above, we may also remove
else condition. For instance, ADD y 1 x instruc-
tion of PLC, which assigns y + 1 to = variable,
is represented by { Z[freq 7y +1 : ] } transfer
set, which corresponds to the statement: ”if( freq)
x =y + 1. If fry was always true, i.e., the
instruction had no condition then it would be
represented by { Z[y + 1] } transfer set.

3.2 Side-effects of instructions

Side-effects mean that a PLC instruction alters
its actual arguments or changes other variables.
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Fig. 3. Diagram of on-delay timer subroutine
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Fig. 4. Side-effects of on-delay timer (TON)

Instruction with side-effects cannot be normally
converted into expressions where any of the other
operands of the expression would be affected.
They should be processed by special way.

Figure 4 shows PLC ladder diagram with on-delay
timer TON. Its behavior can be emulated by the
timer subroutine in Figure 3. The subroutine takes
an evaluated input condition f,., as its argument.
It sets DN (done) and EN (enabled) output bits,
which are tested by PLC instructions. DNO and
ENQ are their memories utilized for dealing with
side-effects, t0 remembers the beginning of timing
and it is loaded from a system tclock timer, and
T is required the length of time.

The ladder diagram in Figure 4 can be converted
by several ways: into one block by composing all
rungs 1-3 into one transfer set; or into two blocks
(rung pairs 1-2 and 3, or 1 and 2-3); or into three
blocks by expressing each rung as one transfer set;
eventually into more blocks, if some instructions
will be emulated by stand-alone transfer sets.

In all cases, the call of the timer subroutine is
inserted only in front the block of converted in-
structions, among which is a timer instruction —
we denote this block by BCIT in this subsection.

The values of z1 and z2 outputs depends on the
state of DN bit before calling the timer subroutine
and by contrast, 3 value depends on the state
of DN bit after its call. Therefore, we must also
satisfy this property inside of BCIT.

If all output bits of a timer are read only after
executing the timer instruction inside BCIT in
all cases, the timer instruction is replaced only
by {7i[freg]} transfer set, where 7 is a unique
variable of the address utilized by the timer. It will
be the input argument of the timer subroutine. 3

Otherwise, if some timer outputs are also read in-
side BCIT before the timer instruction, the timer
instruction is replaced by {71 [ freq]l s Tie[1]} trans-
fer set, where 71, is a unique auxiliary variable
initialized to zero by adding {71.[0]} operation
before BCIT, and the addresses of all timer bits
accessed inside of this BCIT are replaced by multi-
plexing according to the state of 71.. For instance,
DN bit will be replaced by the operation:
((t1e A DN) V (=71 A DNO))

Notice, that this is necessary only in BCIT. The
switching is useless in all other converted blocks,
because there will be always 7, = 0. 4

The same method must be performed for all op-
erations with side-effects or unpredictable effects,
as storing data into an indirect address. To assure
their correct evaluation, they must be converted
as separate blocks, if it is possible, otherwise the
switching of their before-after content should be
included. In extremely critical cases, such oper-
ations can be emulated as the step by the step
procedure, i.e. as stand alone statements. There-
fore, side effect PL.C operations will always require
human’s supervising and their fully automatic
conversion is an idea for further research.

4. EXAMPLE OF CONVERSION

Figure 4 depict a fragment of a PLC program
for counting boxes with a simple time filter of
input. The instruction list exported from SLC
5/03 processor is:

SOR XIC S:1/15 CLR N7:0 EOR
SOR XIC I:1.0/0
BST TON T4:0 0.01 90 0
NXB XIC T4:0/DN OSR B3:0/0
ADD N7:0 1 N7:0
BND
EOR

3 Each address of timer instruction must be utilized only
once times in any PLC program.

4 Reading timer bits before executing timer instruction
usually means an ineffective coding because we add the
delay of one scan. Such operations are normally utilized
only in few special cases, 2nd rung in Figure 4 illustrates
one of them — it represents a pulse generator.
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Fig. 5. Counter of boxes

If the detector 1:1.0/0 gives signal longer than
0.9 second then N7:0 counter is incremented. The
counter is initialized when PLC performs the first
pass (bit S:1/15) after switching to run mode.

We first create PLC storage by assigning memory
addresses to variables:

b <« S:1/15, ¢ <« NT:0,
d < 1:1.0/0, m <« B3/0, and DN < T4:0/DN,

to which we also add PLC flag register f,., and
PLC boolean evaluation stack eq, e, whose depth
is enough for this program. The last variable 71,
corresponds to the input condition on the timer
T4:0. It yields S = {b,c,d,m, DN, Ty, freg,€1,€2}
storage. Because our program does not access
timer bits before evaluation of time instruction,
we utilize simple emulation of timer and create
transfer sets for the used instructions:

SOR, EOR = {f.[1],€1[0] , €2[0]}

BST = {eAlA[[OH 7€A2[[fr69]]}

NXB = {f',:eg [[BQH 76A1 [[freg \% 61]]}
BND = {freg Hfreg \ 61]] s €1 [[0]] ) €2 HO]]}
XIC X = {frAeg [[freg A J}]]}

OSR m = {f;eg [[.freg A _‘mﬂ 7m[[f7"€g]]}
TON = {71 freg]}
CLR ¢ = {é[[freg?o : Cﬂ}

ADD c1c = {¢[freg?c+1:c]}

If we compose each rung separately, we obtain
after removing uninterested fr.4, €1 and ez that
are initialized by EOR instruction:

Ri={e[b70 : c]}
B [dANDNA-m?c+1: c],

27\ Ald],m[d A DN]
The transfer sets correspond to C language state-
ments where the timer subroutine is called with d
argument, i.e., 71 [d]] transfer set:

if(b) c=0;
ExecuteTimer(d);
m_temp = d && DN;
if(d && DN && !m) c_temp=c+1;

m=m_temp; c=c_temp

// 1st block
// 2nd block (BCIT)

Finally we test composing the both rung into one
block. It yields:

Ez @El

[dADNA-m ? (b?1 : c+1)
C|[ 2 (b?70 : ¢) ﬂ’
t.[d], m[d A DN]

This program evidently leads to longer source
code, so the separate conversion is more efficient.

5. CONCLUSION

The presented method converts a PLC program
to programming statements, which can be used
either for a low cost emulation of the program or
as auxiliary tool when a debugged PLC program is
moved to another cheaper hardware, for instance
to PC computer.

There are many possibility for future research
and many lines of further development suggest
themselves, for example optimization of producing
final code to reduce requirements for temporary
variables. An interesting approach also represents
utilizing some faster analogy of the described PLC
emulation (for instance with a partial aid of binary
decision diagrams) for dynamic verification of
PLC programs or for searching their state space.
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