
c© Copyright IFAC
ENERGY SAVING CONTROL IN PLANTS AND BUILDINGS

Bansko, Bulgaria, 2006

AUTOMATION IN BUILDINGS AND FORMAL
METHODS

Pavel Burget ∗ Ondřej Šprdlı́k ∗∗ Richard Šusta ∗∗∗

∗ DCE-Prague: Department of Control Engineering,
Faculty of Electrical Engineering, Prague, Czech

Republic
burgetpa@control.felk.cvut.cz

∗∗ DCE-Prague, sprdlo1@control.felk.cvut.cz
∗∗∗ DCE-Prague, susta@control.felk.cvut.cz

Abstract: The paper presents a case study based on our practical model
of energy saving in a small building equipped by an industrial distributed
control system. First, we overview our model built over LonWorks networking
platform and then we discuss increasing the reliability of control programs by
formal methods. Their possible application is demonstrated by the example
of verifying the control program for a solar space heating. We show that
some safety verifications are performable without constructing a whole hybrid
model. Finally, we discuss the results achieved up to date.
The principles presented in this case study are applicable on a general level
for other similar systems. Copyright c© IFAC 2006

Keywords: automatic control, distributed control, control program,
programmable logical controllers, model, formal methods, case study

1. INTRODUCTION

This paper discusses how to increase the re-
liability of a control program. It follows from
our experiments with the practical model of
energy saving in a small building controlled by
a distributed industrial system. There are two
main reasons for constructing model: research
and education.

At first, distributed solutions offers many ad-
vantages, for example in terms of reducing
wiring, flexibility, and system reliability. They
naturally improve the transparency of pro-
grams by their subdividing into several smaller
units instead of concentrating all elaborations

1 A part of this work is supported by 2C06010 project.

into a single central point. Such splitting has
many advantages concerning well-arranged
implementation.

However, such approach has also potential
drawbacks for further studies, as network
problems and software shortage caused by
missing ready-made software modules for dis-
tributed control. Therefore, new programs are
written.

The reliability of new programs is often seen
as an unknown link. Fortunately, our and
other’s practical experiences show that overall
maintenance of new software usually requires
higher expenses only in the initial phases of
a system’s operation, because software repair
effort often follows nonhomogeneous Poisson

process with intensity function µλ e−λt, t > 0,
where µ ≥ 0 and λ ≥ 0 are parameters of a pro-
gram, e.g. Mockus et al. (2003). But the initial
phases can cost more than admissible under
unfavorable conditions, especially in smallish
projects with limited quotations for mainte-
nance.

Fortunately, smaller distributed programs can
be checked in reasonable time even by meth-
ods that are generally susceptible to the well-
known state-explosion problem. Therefore, we
have examined possible applications of formal
methods in this area. Apart from other pur-
poses, our model of energy saving in a small
building is also intended for an education, pos-
sibly for a remote learning. In this case, the
situation is much worse due to inexperienced
programmers and preprocessing their codes by
formal methods can protect the model against
shock stresses in extreme states.

Organization of the paper: In section 2, we
overview our experimental model of energy
saving automation in buildings. The results
and gained experiences with formal methods
are given in section 3. In section 4, we conclude
with a summary and remarks about future
plans. In section 5, we discuss formal methods
utilized for analysis and related works.

2. THE EXPERIMENTAL MODEL

The model has been designed as a two-floor ad-
ministrative building, see Figure 1. Its dimen-
sions are 2600x750x1600mm. Two offices, one
on each floor, constitute the right-hand part of
the building, while the left-hand part is com-
posed just of a big lecture room. Between both
parts there is a lift shaft and a corridor. The
left-hand part can be departed in order to be
exhibited at a fair or conference.

Several physical quantities, such as tempera-
ture and lighting intensity can be controlled.
Furthermore, the behavior of the building can
depend on its state, i.e. on the presence of peo-
ple in certain areas of the building, on the time
of day, on the environment of the building, etc.
At this stage of the project, we have involved
occupancy detection and time-of-day behavior.
Other schemes of behavior are under consider-
ation now.

In the right-hand part, there is an electric
warm-water furnace and a solar collector which
are used to heat the two offices using radiators.
The commissioning of its control program will
be main topic of Section 3. Photograph 2 shows
the uncovered model.

lecture
room

office 2

office 1 technology
room

garage

lift shaft

Fig. 1. The structure of the model

Garage

Office 1

Office 2

Lecture
Room

Technology
Room

Lift Shaft

Fig. 2. The uncovered model

2.1 Control devices

The control system of the building is struc-
tured according to the hierarchical model of
distributed control systems as can be seen in
Fig. 3.

Level 1 corresponds to the connection of field
devices directly, i.e. locally, or via a sensor
bus such as DALI or EnOcean. LON can be
used as sensor bus too. Relating to our model,
one control system with corresponding connec-
tion of sensors/actuators is used for each room.
In other words, the sensor bus or local con-
nection of input/outputs is used within each
room whereas the control systems in individ-
ual rooms are at level 2 and are connected
via LON. Individual LON segments are inter-

Control
system

switch
gateway

LON

Server

Ethernet / CNIP

TCP/IP

AI / AO / DI / DO
DALI / Enocean

LON

S S

Control
system

S S

level 2

level 1

level 3

level 4

Fig. 3. Hierarchical structure of the building

connected at level 3 via L-Switch device and
the gateway functions are performed by L-IP
device, which enables connection of the entire
building to the superior server and internet.

The model contains several rooms based on
different technologies and approach to the con-
nection of devices at level 1 (see Fig. 3). In the
following subsection we will describe only one
basement room which program was verified.

2.1.1. Technology room In the lower right-
hand part – basement there is a technology
room with a heating furnace, LonWorks switch
and IP router and power supplies for the whole
part. There is a dedicated PLC which is used
to control the furnace, which program will be
main topic of the next section.

There are two warm-water pipelines for the
radiator and solar collector circulations. For
simplicity sake they lead to the tank in the fur-
nace and the pump in each pipeline determines
whether the water circulates or not. In a real
installation there would be a heat exchanger in
the furnace and a valve for each pipeline. Thus,
the the solar collector on the roof is involved
in the heating system and its operation is con-
trolled by controlling the pump in the respec-
tive pipeline. The temperature is measured at
the input and output of the furnace and at the
output of the solar collector.

It is important the furnace control system is
completely autonomous because it is crucial for
safe operation that the temperature and the
pressure in the furnace do not exceed their
maximum values. Thus we decided to use TAC
Xenta PLC with LON connection so that we
have enough information about the furnace for
the visualization and the furnace can be safely

S
ol
ar

 C
ol
le
ct
or

M

Pulse Width
Modulator

Discrete
Control

Commands and
Parameters

F
in

it
e

a
u
to

m
a
ta

T
im

e
d

a
u
to

m
a
ta

PDS
Controller

A
lg

o
ri
th

m

Hot
Water

Storage

F
u

rn
a
c
e

S
p

a
c
e

 H
e

a
tin

g

External Solar
Simulation

Fig. 4. Simplified Structure of Heating Control

operated even if the communication goes down
and some disturbances appear.

In order to be as realistic as possible we have
also installed a three-way valve which can be
used to bypass the furnace and perform circu-
lation of the water just in the radiators. In this
way we can optimize the energy consumption
for the heating system.

Modular programmable devices, which are ex-
tensible in their number and potentials, offer
other interesting advantage for an automation
in buildings — a complete freedom to design
every possible functionality. To open possibil-
ity for modeling different strategies, the solar
space heating, which includes the furnace, ra-
diators, and the solar collector, is controlled by
WAGO modular PLC.

3. TESTING OF SOLAR HEATING
CONTROL

We have tested the controller for the solar
space heating. Its program was designed, writ-
ten and debugged by another group, which give
us only the plan of building and their ’finished’
source code. Our analysis consists of several
phases: the decomposition of the program, a
checking safety properties and liveness proper-
ties, and tests of the whole model. We discuss
these steps in the following subsections.

3.1 Decomposition of Control Program

Figure 4 depicts the simplified structure of the
controller of heating system described in Sub-
section 2.1.1. Its discrete part switches valves
and pumps according to comparisons of mea-
sured temperatures to specified thresholds.

C = switched continuous system

Binary inputs

M = FSM
Finite State Machine

Q1

s w r

Q2

s wr
p mp

Q0

Q3

p mp

Q5

h ea t

Q6

h ea t

H
o

t
W

a
te

r
S

to
ra

g
e

Furnace M

M

Digital I/O modules

Continuous
control

P
a

ra
m

e
te

rs

Controlled solar heating system

A/D

Interface

B
in

a
ry

 o
u
tp

u
ts

Σ

Ω

D
AD

D
ba

D
bin

PDS

PLC program

Fig. 5. Extraction of FSM

The furnace temperature is stabilized by PDS
(proportional derivative and strain) controller
algorithm that is based on input and output
temperatures inside the hot water storage.

All parts of this program were extracted from
CoDeSys programming environment for WAGO
PLC and prepared for the further processing
by decomposing into initializations and algo-
rithms of continuous and discrete control. We
also preprocessed PLC program by the transfer
set conversion tool that gives results suitable
for NuSMV checkers. This step is not necessary
and can be omitted, but it increases the speed
of the checking, see related works in Section 5.

The PDS algorithm does not contains loop and
always terminates. We successfully checked its
validity by its comparing its behavior with a
known reference controller. The action variable
of the PDS controller is converted by a PWM
(pulse width modulator) subroutine and send
to the furnace. The PWM subroutine behaves
as an autonomous timed automaton with 2
states and it clearly contains no deadlock.

Finally, we joined verified PDS controller to-
gether with the solar heating into C general
switched continuous system, defined for exam-
ple in Labinaz et al. (1997).

We concentrate here on isolation of M discrete
part that controls C, as depicted in Figure 5.
Let us denote a set of all binary variables as B
and a set of all integer numbers as I.

We also introduce α(A) defined by Carte-
sian product {0, 1}|A| where A is any finite
nonempty ordered set of binary variables, A ⊂
B. Using α(.) we define M, a finite state ma-
chine (FSM) accepting only binary inputs Σ ⊂
B. It is defined as a tuple

M df
= 〈Σ,Ω, V, AΣ, δP , Q0〉 (1)

where Σ, Ω, and V are a nonempty set of
binary inputs, outputs, and internal variables.
A nonempty subset AΣ ⊂ α(Σ) stands for all
recognized inputs, Q0 ∈ α(V)×α(Ω) represents
an initial state of δP program described as
partial mapping:

δP (q, x) : α(V)×α(Ω)×AΣ → α(V)×α(Ω) (2)

where q ∈ α(V)× α(Ω) and x ∈ AΣ.

M belongs to Moore’s automaton family of
FSM with X = α(Σ) input alphabet, Y = α(Ω)
output alphabet, and Q = α(V) × Y set of
states. Its output function ω depends only on
Y and δ transition function and it corresponds
to δP in all defined points. Q0 initial state is
given by an initialization block of the program.

Our FSM accepts only binary signals. All its
inputs are directly mappable into Ω outputs
due to joining the PDS controller with the solar
heating, see in Figure 5. On the contrary, C
outputs split into two disjoint input sets Σ =
Dbin ∪ Dba, where Dbin ⊂ B includes all direct
binary inputs of M and Dba ⊂ B represents
binary results of mapped analog values from
A/D convectors.

Without loss of generality, we may assume that
the block of A/D convectors gives DAD set of
variables that consist of temperature values
and their required linear combinations. Their
data are integer numbers with finite resolu-
tions rAD, usually 12 or 16 bits.

The interface converts DAD into Dba set of bi-
nary variables compare their values with con-
stant parameters from a given set P . The map-
pings have the forms:

φi(DAD, P) : I× I → {0, 1} (3)

3.2 Safety properties

We show in this subsection that some safety
properties can be verified fast without model-
ing continuous part of the system, i.e., without
identifying whole controlled general discrete
dynamic system (GGHDS).

Safety properties are usually described in com-
putational tree logic (CTL) by AG x state-
ments, i.e., x proposition should hold globally
on all execution paths. To verify proper reac-
tions to events, we replace x by x1 ⇒ AX x2,
which asserts that x2 becomes true on all exe-
cution paths at the latest in the next step after
detecting x1 event. For example:

AG(tsolar ≥ tmaxs ⇒ AX SolarValve = 1)

AG(ttanker ≥ tmaxt ⇒ AX Heating = 0)

The first statement specifies that SolarValve
valve should always open when tsolar solar
panel temperature will reach tmaxs maximum
level. Similarly, the second specification tests
switching the heating off if overheating the hot
water tanker is detected. The both specifica-
tions convert temperature to binary values by
comparisons M inputs with constants.

We define α(Σ, C) ⊂ α(Σ) as a set containing
n-tuples, n = |Σ|, with inputs measured on all
possible trajectories of C. Thus, α(Σ, C) repre-
sents an input alphabet of C in feedback loop
M and C. We define L(α(Sigma, C), C) language
as a set of all possible input sequences of C in
the feedback loop. If we denote Kleene closure
by ()∗ then

L(α(Sigma, C), C) ⊆ (α(Σ(C)))∗ ⊆ (α(Σ))∗ (4)

It is possible to prove the following. Let be
given a CTL specification S = AG(x1 ⇒ AXx2),
where x1, x2 are logical expressions with vari-
ables of Σ ∪ Ω. If S is satisfied for all strings
w of some given L input language, which is
accepted by M , then S will also hold for all
strings from any non-empty subset Li ⊆ L. The
same conclusion is also valid for a simplified
CTL specification AGx1.

In reality, the result is not surprising because
the both safety specifications deal with proper
reactions of FSM to input events. Therefore,
the reverse conclusion does not hold. The valid-
ity of S specification for strings from Li ⊂ L is
only a necessary condition, but not a sufficient
one, because it does not guarantee the same for
whole L language.

There are generally two ways how to modify
the interface for checking CTL specifications
without C — replacement of φ mapping in
Equation 3 and reducing resolutions rAD of A/D
convectors. The first approach utilizes Dba as
direct inputs, so a model checker will test spec-
ifications utilizing strings from (α(Σ))∗ input
language. Practical experiments with NuSMV
model checker lead to approximately 227 reach-
able states and 229764 binary decision dia-
grams (BDD) nodes. The both safety specifica-
tions were validated in 3 seconds on 2.4 GHZ
Pentium with 1GB RAM.

The second method replaces DAD variables by
enumerated types that decrease rAD resolution
of A/D convectors. We replaced measured tem-
peratures by 16-state variables, definable in
NuSMV model checker. In this case, an input
language is less than (α(Σ))∗ and false an-
nouncements are reduced. The checking is only
slightly prolonged even if the number of reach-
able states was nearly 239. The states added by
enumerated types increase BBD nodes approx-

imately only twice, to 448623 nodes. The both
safety propositions required 9 seconds.

3.3 Liveness Properties

We will test liveness properties of output bits
to prevent ”a hanged output”, i.e., an output
remaining forever in one state. The liveness
should globally hold on all executions paths. In
any state, it should always exists at least one
future path (EF) that changes b ∈ Ω state.

We can test liveness of outputs in CTL by the
following pair of specifications:

AG(b = 1 ⇒ EF b = 0)

AG(b = 0 ⇒ EF b = 1)

It can be easily proved that a validity of EF
predicate statement performed with the aid
of strings from a given L language does not
generally imply its validity for subsets or L.
On the contrary, if liveness properties are not
satisfied for all strings of L then they cannot be
also valid for its subsets.

These test were performed by NuSMV by simi-
lar way as the checks of safety properties. They
reveals that two bits remains in state ”1”.

3.4 Testing the Model

The whole control program was transformed
into HyTech model Henzinger et al. (1997).
This step required a lot of effort but it did not
reveal new facts because the solar heating is
relatively a slow and stable process.

Besides, HyTech utilizes ACTL logic specifi-
cations that do not allow utilizing predicates
needed for liveness properties. We could test
only safety properties, which were already val-
idate by easier way.

After all, we utilized whole model only for
checking threshold levels to prevent frequently
switching valves on and off.

4. CONCLUSION AND FUTURE WORK

In this paper, we have reported a case study
in applying formal methods for automation in
buildings. We introduced our practical model of
distributed automation in building with solar
space heating.

We outlined the decomposition of a control
program to continuous and discrete part and
we showed that some verification can be eas-
ier performed without continuous parts. This

approach also allow partial checking liveness
properties, which cannot be tested by HyTech
model checker.

Our work may be considered as a sugges-
tion for similar studies. The project is still in
progress and more complex control programs
are now debugging, so our future work natu-
rally concerns their validations. Our long term
intentions will include automatic checking pro-
grams for remote learning to let students test
them on real models.

5. APPLIED METHODS AND RELATED
WORKS

During our research efforts, we surveyed hun-
dreds of related works in the area of analyzing
control programs, therefore, we narrow their
list only to methods closely related to this pa-
per and our contributions.

• We convert an analyzed program into
transfer sets that was introduced in Šusta
(2003). In short, the transfer sets ex-
presses control programs as operations
with concurrent evaluations of several ex-
pressions all at once and they naturally
remove all inefficient coding, especially in
case of control programs written in ladder
diagrams.

• The transfer sets can be easily converted
into the model checker, e.g. NuSMV uti-
lized in this paper Cimatti et al. (2002).
The fast conversion tool was created by
Šprdlı́k in Java language Šprdlı́k (2005).
Its outputs can be usually verified faster
than programs directly converted into model
checker languages, as described e.g. in
Rausch and Krogh (1998) and Canet et al.
(2000).

• The transfer sets can be also utilized for
cross-compiling into other computer lan-
guage, e.g. C or C#, see Šusta (2004).

To show advantages our approach, we also
tested one more complex program, which con-
trols home gates, by two different ways. First,
we utilized the direct conversion described in
Canet et al. (2000) and measured time that
was needed for testing different CTL propo-
sitions by available implementations of SMV
model checker: CMU SMV, NuSMV, and Ca-
dence SMV.

Finally, we performed these tests the same
program but now preprocessed by the transfer
set conversion.

Table 1 shows that the checkers run faster
for the preprocessed program. The first row

Table 1. Average ratios of speeding up

SMV Our method
Implementation faster by

CMU > 1000 times
CMU +OBDD reorder 66 times

NuSMV 189 times
NuSMV +OBDD reorder 5.2 times

Cadence SMV 10.9 times

presents only a rough guess because 2 tests of
directly converted program were aborted due
to too long runs.

The improvements are enormous because the
analyzed program was written in ladder dia-
gram language and the transfer set conversion
gives good results in this case. In other situ-
ations, a speeding up effect strongly depends
on programming styles and no generally valid
conclusion can be drawn from Table 1.

REFERENCES

Canet, G., S. Couffin, J.-J. Lesage, A. Petit and
Ph. Schnoebelen (2000). Towards the auto-
matic verification of PLC programs written
in instruction list.

Cimatti, A., E. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani and A. Tacchella (2002).
Nusmv 2: An opensource tool for symbolic
model checking. In: Proceeding of the 14th
International Conference on Computer-Aided
Verification (CAV’2002).

Henzinger, Thomas A., Pei-Hsin Ho and
Howard Wong-Toi (1997). HYTECH: A model
checker for hybrid systems. International
Journal on Software Tools for Technology
Transfer 1(1–2), 110–122.

Labinaz, G., M. Bayoumi and K. Rudie (1997).
A survey of modeling and control of hybrid
systems. Annual Reviews of Control 21, 79–
92.

Mockus, A., D. Weiss and P. Zhang (2003). Un-
derstanding and predicting effort in software
projects. In: In Proceedings of the 25th Inter-
national Conference on Software Engineer-
ing (ICSE 2003).

Rausch, M. and B. H. Krogh (1998). Formal
verification of PLC programs. In: American
Control Conference, Philadelphia, PA, USA.

Šprdlı́k, Otakar (2005). Formal verification of
PLC programs by SMV and UPPAAL. In:
15th International Conference on Process
Control 05 [CD-ROM]. Slovak University of
Technology, Bratislava.. pp. 134–1–134–7.

Šusta, Richard (2003). Verification of PLC Pro-
grams. PhD thesis. CTU-FEE Prague. avail.
at http://dce.felk.cvut.cz/susta/.

Šusta, Richard (2004). Low cost simulation
of PLC programs. In: 7th IFAC Symposium

on Cost Oriented Automation COA 2004,
Gatineau (Québec) Canada. Université du
Québec en Outaouais. pp. 219–224.

