
VERIFICATION OF PLC PROGRAMS

by

Richard Šusta

Doctoral Dissertation

Submitted to the Department of Cybernetics

Revised Edition - June 2003

CTU — FACULTY OF ELECTROTECHNICAL ENGINEERING
Prague, September 2002

Submitted: September 30, 2002
Accepted: May 29, 2003

Supervisor: Prof. RNDr. Olga Štěpánková, CSc.

Opponents: Prof. RNDr. Marie Demlová, CSc.
Ing. Radek Mař́ık, CSc.
Dr. Ing. Radim Novotný

c© 2002, 2003 Richard Šusta, All Rights Reserved

Address:
Faculty of Electrical Engineering
Department of Control Engineering
Technická 2
166 27 PRAGUE 6
Czech Republic

E-mail: susta@control.felk.cvut.cz
WEB: http://dce.felk.cvut.cz/susta/

The thesis was written in LATEX2ε of MiKTEX distribution.

ABSTRACT

This thesis is concerned with the conversion of a PLC (Programmable
Logic Controller) program into such a form, that it could be verified by some
available checker tool. As we show, this conversion is a non-trivial problem.

The introductory chapter describes the motivations for this thesis and
features of industrial control tasks to specify the place and properties of
PLC in general.

Chapter 2 contains a short analysis of main PLCs features, summarizes
some facts relevant to this thesis, and explains problems with modelling
PLCs. The chapter ends by the overview of related works.

Our main contribution begins from Chapter 3 on page 31 by defining
abstract PLC (APLC) machine, which is needed as universal transformation
base among different PLCs. The syntax of APLC language is described
and the properties of APLC machine interpreting this language are proved,
mainly the termination and complexity.

APLC machine is based on binary operations with possibility of condi-
tional calls and jumps. Its structure is very close to PLCs, which allows
simple conversions of most frequent PLC instructions into APLC language.

Section 3.3 introduces into t-assignments and transfer sets, which are also
novel contribution of this thesis. The necessary definitions and theorems are
given and proved. This theoretical parts aim to the fundamental proposition
of this approach about the monoid of the transfer sets. The monoid allows
associative compositions of APLC operations.

In Section 3.4 on page 73, APLCTRANS algorithm based on the trans-
fer sets is given. APLCTRANS performs very effective conversion of PLC
programs into transfer sets (or logical functions respectively). The condi-
tion, under which we could expect a linear complexity of APLCTRANS, are
described. The section ends by presenting experiments with 19 PLC pro-
grams, which are controlling real industrial technologies. The gained data
are shown in diagrams and discussed.

The next chapter suggests several possible applications of APLCTRANS.
In Section 4.1 on page 97, we show an automaton generated by PLC, whose
definition utilizes transfer sets properties and gives good base for passing
APLCTRANS outcome into many available checker tools.

We also prove in this section that a PLC program can be modelled by an
automaton of Mealy’s family, if and only if its program is convertible into
APLC language.

Section 4.2 on page 106 deals with simplifying APLCTRANS outcome
by its parallel decomposition. The soundness of the decomposition is proved
and the construction algorithm is presented and demonstrated by an exam-
ple.

Section 4.3 on page 118 presents the verification of races in a PLC pro-
gram. The races are explained, their verification algorithm is given and

3

demonstrated on an example. The transfer sets can prove the absence of
the races, in contrast to the algorithm published in [AFS98], which was only
capable to detect some of them.

Section 4.4 on page 124 outlines composing a timed automaton with
the aid of the transfer sets and APLCTRANS algorithm. An example is
presented to demonstrate this conversion.

The conclusion on page 134 summarizes our contributions and contains
some suggestions for a future research. The appendix overviews some ele-
mentary definitions, which previous chapters have referred to.

REMARK TO THE REVISED EDITION

Some minor errors and typos were corrected in the text. Furthermore, we
have simplified some definitions in Section 3.3, so this revised edition also
includes more comprehensible approach described in our later paper [Šus03].

In the revised edition, we also utilize t-assignment as the new name for
the members of transfer sets. T-assignments have replaces former ’transfer
functions’ that were criticized by the opponents as a misleading notation,
because transfer sets do not contain any functions.

4

ABSTRACT IN CZECH

Tato disertace se zabývá převodem PLC (Programmable Logic Con-
troller) programů do takového formátu, aby se daly verifikovat pomoćı
některého již existuj́ıćıho prostředku pro ověřováńı model̊u. Jak ukážeme,
tento převod neńı triviálńı.

Úvodńı kapitola vysvětluje motivace, které vedly k napsáńı této práce,
a hlavńı rysy pr̊umyslového ř́ızeńı pro objasněńı role a mı́sta PLC v něm.

Kapitola 2 obsahuje krátkou analýzu hlavńıch rys̊u a vlastnost́ı PLC,
ze kterých tato práce vycháźı, a vysvětluje problémy modelováńı PLC.
V závěru kapitoly se uvád́ı přehled publikaćı, které se vztahuj́ı k tomuto
tématu.

Naše vlastńı práce zač́ıná kapitolou 3 na straně 31, kde se definuje abs-
traktńı PLC (APLC) interpret (abstract PLC machine). Ten tvoř́ı základnu
pro univerzálńı popis PLC a transformaci jeho zdrojového kódu. Vysvětluje
se syntaxe APLC jazyka a dokazuj́ı se vlastnosti APLC interpretu, který
tento jazyk vykonává. Uvád́ı se věty o ukončeńı a složitosti APLC programů.

APLC jazyk se oṕırá o binárńı operace a dovoluje podmı́něné skoky a
voláńı podprogramů. Jeho struktura je velice bĺızká obecnému PLC, takže
nejpouž́ıvaněǰśı PLC instrukce se do něho snadno převedou.

Podkapitola 3.3 uvád́ı do t-assignments a trans-množin (transfer sets),
jejichž teorie je též originálńım př́ınosem této práce. Předkládaj́ı se nezbytné
definice a dokazuj́ı se potřebné věty. Tato čistě teoretická část konč́ı d̊ukazem
hlavńı věty o existenci monoidu trans-množin, který dovoluje provádět aso-
ciativńı skládáńı APLC operaćı.

V podkapitole 3.4 na straně 73 se popisuje APLCTRANS algoritmus
založený na trans-množinách. APLCTRANS provád́ı velice efektivńı převod
PLC programů na trans-množiny (nebo př́ıpadně na logické funkce). Uváděj́ı
se podmı́nky, za nichž můžeme očekávat lineárńı složitost algoritmu. Podka-
pitola konč́ı přehledem experiment̊u s 19 PLC programy, které ř́ıd́ı skutečné
pr̊umyslové technologie. Uváděj́ı se a rozeb́ıraj́ı se źıskaná data.

Daľśı kapitola uvád́ı některé možnosti aplikaćı APLCTRANSu. V pod-
kapitole 4.1 na straně 97 se popisuje automat generovaný PLC progra-
mem, jehož definice využ́ıvá vlastnost́ı trans-množin. Automat poskytuje
dobrou základnu pro přeneseńı výstupu APLCTRANSu do řady dostupných
nástroj̊u pro ověřováńı model̊u. éto podkapitole také dokážeme, že PLC pro-
gram lze modelovat pomoćı Mealyho automatu tehdy a jen tehdy, když jeho
program je možné vyjádřit v APLC jazyce.

Podkapitola 4.2 na straně 106 se zabývá zjednodušeńım APLCTRANS
výstupu pomoćı paralelńı dekompozice. Dokazuje se postačuj́ıćı podmı́nka
jej́ı existence a uvád́ı se konstrukčńı algoritmus tohoto automatu, který je
demonstrován na př́ıkladu.

Podkapitola 4.3 na straně 118 se zabývá zjǐstěńım stavové nestability
(races) v PLC programu. Vysvětluj́ı se př́ıčiny této nestability a uvád́ı se

5

algoritmus pro jej́ı zjǐstěńı spolu s ukázkovým př́ıkladem. Trans-množiny
dovoluj́ı vyloučit nestabilitu, na rozd́ıl od algoritmu, který byl publikovaný
v [AFS98]. Ten nestabilitu pouze detekoval v některých př́ıpadech, ale ne-
dovedl dokázat jej́ı neexistenci.

Podkapitola 4.4 na straně 124 uvád́ı postup vyjádřeńı PLC jako časového
automatu (timed automaton) s využit́ım trans-množin a APLCTRANS al-
goritmu. Metoda se ukazuje na jednoduchém př́ıkladu.

Závěr na straně 134 shrnuje naše př́ıspěvky k tématu a obsahuje i některé
náměty pro daľśı výzkum. V př́ıloze lze pak naj́ıt přehled několika základńıch
definic, na než se odkazovalo z textu.

6

ACKNOWLEDGMENTS

I am most grateful to my supervisor, Prof. Olga Štěpánková, who in-
spired me to the verifications of PLC programs.

I would like to thank Prof. Vladimı́r Mař́ık for possibility to participate
in the projects of Rockwell Automation Allen-Bradley’s laboratory, where
I have made my first contacts with PLCs, and to Ing. Jindřich Fuka, the
leader of the laboratory.

I would like also to acknowledge utilizing experience in the thesis that
I have gained by participating in several industrial projects led by Ing.
Vladimı́r Lhotský (the chief of the control division of Blumenbecker Prague),
Dr. Radim Novotný (the manager of SIDAT), and Ing Jǐŕı Svoboda (the
director of SPEL).

Finally, I am indebted to my colleagues from Department of Control
Engineering and mainly to my wife, Dagmar, for encouragement and support
of my work.

7

Contents

1 Introduction 11
1.1 Verification of Programs . 11
1.2 Reactive Software . 14
1.3 Process Control Environment 15

2 Background and Related Works 19
2.1 Overview of PLCs . 19
2.2 Related Works . 28

3 Abstract PLC 31
3.1 Model of Binary PLC . 31
3.2 Abstract PLC Machine . 34

3.2.1 Discussion . 46
3.3 Transfer Sets . 52

3.3.1 Overview of Goal . 52
3.3.2 Weak Composition of T-sets 54
3.3.3 Monoid and Boolean Algebra of Transfer Sets 61

3.4 Converting APLC Program 73
3.4.1 APLCTRANS - Algorithm 73
3.4.2 Discussion . 82

4 Abstract PLC Applications 97
4.1 Automaton Generated by APLC Program 97
4.2 Decomposition of APLC Automaton 106

4.2.1 Algorithm for Parallel Decomposition 111
4.2.2 Complexity and Correctness 112

4.3 Detecting Races . 118
4.4 Abstract PLC and Timed Automata 124

4.4.1 Outline of APLC Conversion to Timed Automaton . . 127

5 Future Work and Conclusion 134

A Used Definitions 136

8

List of Tables

3.1 Operational Semantics for APLC machine - Part I. 38
3.2 Operational Semantics for APLC Machine - Part II. 39
3.3 Grammar of APLC Language 42
3.4 Worst Case APLC Program 48
3.5 Worst Case APLC Program with Nesting Limit 48
3.6 Examples of Converting PLC Codes into APLC 74
3.7 Transfer Sets of APLC Program — Part I. 75
3.8 Transfer Sets of APLC Program — Part II. 76
3.9 Diagram of APLC Program Composition 77
3.10 Tested APLC Programs (see also Figure 3.10) 95

4.1 APLC Program of Mealy’s Automaton 105
4.2 APLC Mix Tank Program . 117

9

List of Figures

1.1 Hierarchical Model of Process Control 16
1.2 PLC as Embedded System . 17

2.1 Principal Schema of Classical PLC 19
2.2 Example of a PLC Scheduling 20
2.3 Distributed I/O Modules . 22
2.4 Directed Ladder Graph for Figure 2.5 23
2.5 Ladder and Function Block Diagrams 23
2.6 Rising edge detection . 24
2.7 Correctness of PLC Program 26

3.1 Structure of Binary PLC . 32
3.2 Example of Composing PLC Program 80
3.3 Implementation of � as Arrays 84
3.4 Implementation of Transfer Sets by BDDs 85
3.5 Implementation of � by BEDs 86
3.6 Example of APLCTRANS Operation without Minimization . 91
3.7 Example APLCTRANS Operation with Minimization 91
3.8 Dependency of Composition Time on the Size of Transfer Sets 92
3.9 Composition of XOR Network 94
3.10 Tested APLC Programs . 96

4.1 Separating Equivalences on Sets of Indexes 108
4.2 Example of Mix Tank . 113
4.3 Decomposed Automaton of Mix Tank 115
4.4 S7-210 Ladder Diagram of Mix Tank 116
4.5 Untimed Abstract PLC with External Timers 126
4.6 PLC Timers On Delay and Off Delay 126
4.7 Automata Added for Timers 128
4.8 Reset, On and Off Delay Timer Automata 128
4.9 Checking Contactor M with Secondary Contact M2 131
4.10 Creation of Time Automaton 133

10

Chapter 1

Introduction

1.1 Verification of Programs

This thesis described herein is concerned with the verification of PLC pro-
grams or, more precisely, with the conversion of PLC program into such a
form, that could be verified by some available model checker.

PLC (Programmable Logical Controller) is an abbreviation for wide
range of products. Numerous manufactures offer many PLC types, from
simple compact models with fixed inputs and outputs to modular PLCs
with a variable structure. Some PLCs are also capable of collecting data by
networks and advance PLCs offer a multitask environment.

In practice, the development of PLC program roughly consists of four
overlapping phases:

1. designing and writing required code,

2. initial testing of new program,

3. commissioning i.e., putting automated technology in operation, and

4. the fine-tuning of a PLC behavior.

The formal methods can help with all phases besides the commissioning,
but mainly with the initial testing and the fine-tuning.

The first phase depends on analysis of control aspects of a technology
and used techniques usually belong to other fields of science. Although
there were done several attempts at developing tools for writing formally
verified PLC code, for example MobyPLC [DFT01, TD98], this techniques
are limited to a subset of control tasks.

The second phase, initial testing of written program, is nowadays pro-
vided frequently by entering selected sequences of input data and monitoring
responses of PLC. This procedure cannot discover all errors. If the program
did some operation several times without a serious bug, this is no proof

11

of the absence of some fatal bugs. Such conclusion could be valid, under
very precise conditions, for hardware but not for software. Hardware fail-
ure modes are generally much more limited, so their testing and building
protection against them is usually easier. For example, if we need to know
the reliability of a relay type we can connect hundred identical relays to a
testing circuitry, million times switch them on and off and estimate their
reliability.

No similar procedure is fully applicable to software. Software does not
subject to random wear-out failures like hardware and it does not degrade
due to wear, fatigue or reproduction process like mechanical elements, there-
fore nonsoftware professionals sometimes put too much confidence in its re-
liability. However, design errors in programs are much harder to find and
eliminate because software behaves in different way than mechanical world.
Million successful runs of a program do not generally prove low probability
of dangerous malfunctions because all possible paths in the state diagram
of a program can easily exceed the million by million times and frequently
much times more.

Users express a dissatisfaction with manual rigorous testing of software
since 1940s, with the development of more complicated programs. This tech-
nique received nickname ’debugging’ (reputedly after a dead moth that was
found inside contacts of a relay when Mark II computer was developed).
Debugging is frequently used method but very poor tool for the safety di-
agnostic. E.W. Dijkstra’s saying is well known: ”testing can reveal only the
presence of errors, not their absence.”

The testing of a PLC program could be improved by a model checker (e.g.
SMV [McM97], SPIN [Hol97], UPPAAL [LPW97], KRONOS [DOTY96],
and others) but this way is used rarely for some reasons like:

• The usage of a model checker requires some expertise. Known checkers
are far from an ideal situation: ”enter a program and propositions and
read results”.

• Model checkers require describing verified operations in special lan-
guages. Any manual conversion of a PLC program to a checker code
can devalue results by adding new errors.

• Existing checkers are capable of analyzing models with limited com-
plexity and even very simple PLC programs need many variables;
n ≥ 100 variables is rather a normal than an unusual case. This
gives a theoretical number of PLC states is 2n.

• A manual decomposition of a PLC program to simple blocks can be
too laborious.

We consider that the primary problem of PLC verification lies in the
conversion of written PLC program into a proper form. We suggest that

12

this tool should strictly operate on the base, which could be phrased as the
following. Enter a PLC code in the tool, and obtain the output suitable for
the most of checkers. Any manual adjustments of data should be reduced
as much as possible. If such tool had existed, it would open possibility for
employing many verification techniques.

The formal verification of a PLC program when an introductory testing is
performed, prolongs this phase. However this extra effort will facilitate and
hopefully speedup the following phases. Every error that was discovered will
short the commissioning. This critical and very expensive phase compares
our internal model of the technology in question with the reality.

A controlled program was written with respect to some presumptions,
which need not be necessarily correct or complete. For example, used in-
dicators could give output signals with inverse polarity than planned, or
wires were connected to another I/O post mistakenly. Therefore, no formal
verification can substitute practical putting PLC programs in an operation.

When the technology runs successfully, other malfunctions are discovered
gradually. PLC program is fine-tuned for month, years. Based on personal
experience, not only with my own programs, but also with the other ones,
I daresay that no complex PLC program is error free. Technicians have
popular saying: ”PLC program will be definitely debugged only when the
controlled technology is already totally worn-out and scrapped.”

The formal methods could help to locate very rare malfunctions, whose
manual finding represent sometimes so exhausting process that workers pre-
fer accepting them like ’necessary component’. I personally encounter this
approach many times.

The funniest story happened to me in a Slovak cement factory where I
noticed a hammer suspended on a thin chain beside a big industrial relay.
When I asked a production foreman for the purpose of the hammer he
explained to me that the relay needed sometimes a small stroke to fix its
malfunction and workers hung the hammer here not to bring it with them
all the time. I logically asked why the bad relay had not been replaced.
The foreman answered with serious face that replacing the relay could have
caused a lot of troubles. The malfunction could have moved to some worse
accessible component and so it is better to let her stay here.

I did not laugh at his personification of malfunctions. Three good reasons
kept me quiet. At first, it was potentially possible that a malfunction of the
relay could disable another problem. I several times experienced appearing
new bugs after fixing a previous one. At second, I understood foreman’s
point of view. Workers were upset by too many bugs. They had not fully
gotten accustomed to newly automated machines yet and therefore they felt
happy to encounter the classic relay malfunction. Finally, I had no reason
for laughing because I arrived in the factory to fix my own program; filling
railways wagons with cement powder sometimes stopped without reasons
and the restart button had to be pressed to continue. It was not the fatal

13

malfunction, only troublesome, because I programmed auxiliary operations
allowing to go on without loosing information. Writing control program I
calculated with possibility of hidden errors undiscovered by the testing.

The situation that some errors ’survived’ all rigorous tests and turned
into an ’integrated’ part of a machine happens more frequently than it is
generally taken into account. The investigation of deadly accidents in safety-
critical systems involved a computerized radiation therapy machine called
the Therac-25 brought also attention to the fact that operators accepted
frequent low dose malfunctions as ’normal behavior’.

’ She said [hospital physicist]: ”It was not out of the ordinary
for something to stop the machine. . . It would often give a low
dose rate in which you would turn the machine back on. . . I can’t
remember all the reasons it would stop, but there [were] a lot
of them.” A radiation therapist at another clinic reported an
average of 40 dose-rate malfunctions, attributed to underdoses,
occurred on some days.’ Quoted from [LT93] .

The operators worked on the Therac-25 machine demonstrating a lot of
evident imperfections in its control software, but hospitals continue using the
machine until second Tyler’s overdose (fifth dead accident in the order). The
manufacturer of Therac-25, Atomic Energy Commission Limited (AECL),
had tested its control program for 2,700 hours of use and did not find out
two mortal bugs in it [LT93]. The bugs also ’survived’ detailed inspections
of Therac-25 which had been performed after the previous dead accidents.
Proper formal methods should locate the bugs in few hours or days.

1.2 Reactive Software

In this part, we specify the range of tasks in general, to which we aim
our attention. The formal verification is too wide and difficult task. Many
methods have general validity but the selection of a suitable method depends
heavily on our requirements. In practice, all verification methods are limited
to a part of programs and universal tools are hardly ever given.

The Harel and Pnueli [HP85] divided universe of computer programs
from point of computation into those which are transformational and those
which are reactive. The typical representative of a transformation program is
the function f(y1, y2, . . . , ym) = (x1, x2, . . . , xn) producing upon termination
the final values y1, y2, . . . , ym from input parameters x1, x2, . . . , xn.

Francez [Fra92] calls such program the state (or value) transformer and
characterized it as follows:

The ’task’ of the [transformation] program is to compute, start-
ing from some initial state, for some finite amount of time, and

14

then to terminate by producing some final state or outcome of
the computation, having some desirable properties.

By contrast, a reactive program, the topic of this thesis, is one of that
maintains an ongoing interaction with its environment and responds to dy-
namically changing inputs by producing stream of outputs. In such cases,
speaking about a reactive program means speaking about combination of
program and hardware, the both being embedded in an environment.

1.3 Process Control Environment

An important environment for verification is the process control. Every ser-
viceable method, even that capable of finding out a small subset from all
possible bugs, can prevent huge financial losses. To specify process con-
trol environment, we build the hierarchical model of a production that will
be derived from general CIM model [Slo94]. Figure 1.1 depicts the model
modified for a common industrial process.

Technological process level lies at the bottom grouping all machines,
production lines, drives, and the like. It also includes the sensing units and
actuators necessary for the automatization and tools for communications
with workmen, like information indicators, displays, command elements for
manual actions, and so on. The automatization components used here are
mainly prefabricated and their usage requires only setting proper parame-
ters, either manually or with the aid of supplied programs.

The control is done from Logical control level by programmable logic
controllers (shortly PLCs), specialized computers designed for maximum
reliability and harder environment conditions. We will aim our attention to
them in next subhead.

At this point, we must highlight that the boundary between the two
lower levels of our model is more organizational than physical. The elements
included in Technological process can be physically placed in some PLC, or
plugged in a PLC rack when a modular PLC is used. For that reason we
should talk more precisely about PLC processors i.e., the central units of
PLCs, which control Technological process in our model. Hereinafter we will
call PLC processors shortly PLCs in accordance with common practice in
PLC literature. If we specifically have in mind a PLC as the electronic device
consisting of PLC processor and other support modules, we will always
emphasize this fact.

The top level, Supervising, supervises whole process, checks for its safety
conditions and modifies its run according requirements of planning and man-
agement. Supervising level includes systems for visualizations of the process
flow and operator’s interfaces for setting required data.

Concentrating on PLC we can simplify our previous model to the em-
bedded model depicted in Figure 1.2. The model consists of a program, a

15

Figure 1.1: Hierarchical Model of Process Control

16

Figure 1.2: PLC as Embedded System

PLC on which the program runs, and environment in which PLC hardware
runs. The environment means not only process itself to be controlled (a ma-
chine, vehicle, aircraft, or a whole factory), but also cooperating components
(another PLCs, monitoring devices, or operator panels).

We can present few assumptions for the environment that the part of
PLC applications could possibly satisfy. They will not hold for all of them
certainly, thus the following list should be considered as some better case for
PLC verification:

1. All analog control loops are closed in Technological process, for exam-
ple with the aid of special external modules, as speed controllers and
the like.

This assumption excludes hybrid programs i.e., those con-
trolling both analog and logical devices. This is acceptable,
because utilizing specialized elements is a common prac-
tice for faster analog processes or dangerous peripherals as
drivers, and PLC programs usually control only minor pro-
cesses with slow time constants, for example heating and so
on. The specification does not rule out all hybrid PLC pro-
grams. Under suitable conditions, there is possible to split
verification to an independent analog and digital part.

2. PLC hardware is connected to the PLC environment by digital input
and output signals, as a contact is either closed or opened, or a drive
is either running or stopped. Hence inputs and outputs contain only
binary or finite integer variables and their values sampled in some time
will fully describe momentary state of PLC environment.

Some PLCs utilizes peripheral devices that require over-
lapped data transfer. After initialization and starting the
transfer is performed asynchronously with PLC program
flow and its termination is signaled by an event. These

17

devices usually need special handling algorithm that have
many features of parallel programming and their verifica-
tion is more difficult. 1

3. Technological process takes into account unexpected switching any
PLC control off. In that case mechanical and electrical arrangements
of Technological process will automatically move all uncontrolled ma-
chines to harmless positions to prevent things fall down, and the like.

This assumption follows from common work safety rules that
demand immediate interrupting production in dangerous sit-
uations. Stopping PLC will naturally result in suspending
”Technological process”, either whole or its part. Conse-
quences of such break will depend on the controlled technol-
ogy. Many technological processes allow continuing without
a serious lost, with exception of time. The practical conse-
quence of the specification is resetting a part of outputs when
initializing a PLC program. Thus we have initial states!

4. All control operation are provided on Logical control level.

This describes common situation in PLC control applica-
tions. The safeties of prefabricated automatization compo-
nents, utilized in ”Technological process”, are mainly mat-
ters of their manufactures. The proper wiring, arrangement
and setting are usually only possible verifications left to au-
tomatization engineers. On the contrary to this, the veri-
fication of ”Supervising” level is nearly impossible, because
there are usually utilized higher level computers (as PCs or
workstations) programmed by rapid development environ-
ments specialized for supervisory tasks, for example RSView
(Rockwell Automation), WinCC (Siemens AG), or Operate
IT (ABB). Under favorable circumstances the flow diagrams
of user’s programs or user’s data can be formally verified,
but not the computer operating system itself and runtimes
library supporting applications. The stability of ”Supervis-
ing” level will always be unknown factor and therefore crit-
ical control operations are programmed at Logical control
to ensure Technological process independent on Supervisory
level.

1Such data transfers are used only for either multichannel analog modules or highly
specialized units, that operates as independent devices, for example obtaining visual in-
formation [FŠ92, Šus93].

18

Chapter 2

Background and Related
Works

2.1 Overview of PLCs

In this section we review some of PLC characteristic for the convenience of
all the people who need to acquaint more with them.

There are many books about PLCs but, in fact, most of them present
technical details of a specific PLC type like configurations and the sets of
instructions as manuals [Roc98], [Roc01b], or [Sie02].

Theoretical overviews of PLCs appear rarely. They usually do not cover
some advanced features and concern fundamental principles needed for en-
gineers and technicians [Hug89]. Some brief information can be also found
in PLC related publications [BHŠ00], [Die00], and [Tou00]. Therefore, we
have written this part, which overviews some facts relevant to next chapters.

In general, a PLC behaves more like regulator than an ordinary com-
puter. A PLC program is executed in the cyclic manner, depicted in Figure
2.1. One general PLC cycle consists of:

• Polling inputs, or sampling respectively, and storing their values into
inner memory. This phase is called Input scan in PLC manuals.

Figure 2.1: Principal Schema of Classical PLC

19

Figure 2.2: Example of a PLC Scheduling

• Calculating the proper control action. The operating system of the
PLC executes the user’s program once. At this point, the program
makes arbitrary computations and changes the values in special mem-
ory for outputs. This phase is called Program scan.

• Writing outputs to peripherals. This phase is called Output scan.

The circle shown on the right side in Figure 2.1 symbolizes all three
phases. They can be easily programmed on nearly any computer with the aid
of an endless loop, with the exception of efficient polling numerous input and
an output signal in hard industrial environment. This polling is the primary
domain of PLCs and it mainly distinguishes them from other computers.

Older PLCs or simple types strictly operate according to Figure 2.1.
Advanced models are capable of running several tasks and they have not
strictly bound program scans to input and output scans, as shown in Figure
2.2. Their scheduling comes near to high level operating systems with only
one exception. PLCs have no direct human graphical interfaces and therefore
they need not quickly switch between processes to create illusion of fluent
drawing. If no task with higher priority is waiting, each running program
can be executed all at once.

We label activation of a task the operation of PLC scheduler that begins
immediately scanning of some task if no scan with higher or equal priority
is momentary done, otherwise the task is added into a queue in which tasks
wait for their scan. Four main types of activation of a task use to be found
[Roc01a]:

Continuous task. The task is held permanently active. When one its scan
is finished, the second scan is automatically started at the first possible
moment;

20

Periodic task. The task is set active in periodical time intervals;

Event-driven task. The task is set active if some event occurs.

Sequential task. The activation of the task is controlled by a special se-
quential program that is usually based on Grafcet [Int92]. The name
and syntax depends on a manufacture, for instance, Allen-Bradley
PLC have sequential program SFC (Sequential Function Chart) and
Siemens PLC series S7 use S7-Graph. Sequential tasks comprise a
higher level of PLC programming. They are suitable only for con-
trolling processes, which consist of series of distinguishable technology
operations, and therefore their verification is not included in this the-
sis. It is studied in several other publications, for example [BM00] or
[Tou00].

Practically every PLC has at least one continuous task that uses to be
its primary task. Most of PLC types (even simple ones) allow one or more
periodic tasks. The event-driven tasks are often reserved for PLC operating
system. They are activated on errors or selected situations, as the first
scan after PLC power up that serves for initializing variables, 1 but some
PLCs allow programmer utilizing event-driven tasks for monitoring changes
of inputs.

The second important changeover against Figure 2.1 in advanced PLCs
concerns input and output scan. PLCs utilize distributed data collections
by specialized modules connected throughout control area networks, as de-
picted in Figure 2.3. Such solutions minimize the total length of necessary
wires (usually the faultiest components of an automatization) from PLC to
controlled elements.

Using networks adds delay to the reading and the writing of external
data. If all input and output data are polled in one-stroke, scan times
increase inadequately. For that reason, some PLCs are designed with I/O
channels operating independently to the program execution. Their polling is
not synchronized with the program scan and reading and writing I/O data
depends only on predefined refresh times for individual input or output. In
such case, the PLC scan cycle, in Figure 2.1, consist of only one phase —
program scan.

In such environment, PLC inputs and outputs are usually divided into
scan groups and I/O scans are replaced by asynchronous operations, which
periodically sample input values or send outputs to the peripheral devices
in intervals that depend on individual settings of the scan group which data
belong to. If an program operation needs inputs that do not change dur-
ing whole program scan, then it must begin by copying inputs into some
variables, which it will use i.e., it performs its own input scan. Similar du-
plication must be done for the outputs at the end of the operation. These

1We utilize this first scan initialization in Section 4.1.

21

Figure 2.3: Distributed I/O Modules

copying could be also used for repairing inputs or outputs (see page 98).
Therefore, if we verify a PLC program, we should take in account that:

• the inputs or outputs could be moved to different addresses in the
program,

• the inputs can be ordinary variables stored in PLC memory i.e., some
instructions can possibly write to an input, 2 and

• we must add to inputs also variables that are generated by PLC oper-
ating systems, for example ”first scan” signal mentioned above.

Software - PLC Programming

In 1993, the International Electrotechnical Committee (IEC) published the
IEC 1131 International Standard for PLCs [Com]. The part 3 of this stan-
dard defines a suite of programming language recommended to be used with
PLC. The standard defines the semantics of these languages mostly by way
of examples. It focuses attention mainly to graphical languages that substi-
tute elder forms relay diagrams and logical function.

Ladder Diagram (LD) - graphical language that appears as the relay
diagram schematics;

Function Block Diagram (FBD) - graphical language that is based on
rectangular boxes interconnected by means of connection and connec-
tors. It appears like a schematic of logical function;

Instruction List (IL) - language resembling a typical assembler;

Structured Text (ST) - textual language with PASCAL like syntax and
functionality. Its meaning fades in comparison to other tools.

2There are also some read-only inputs in PLCs, either protected by some settings or
generated by PLC system, but all attempts of changing their values are recognized by PLC
programming software and announced as errors. Thus we may suppose that a program
writes only to variables, which may be changed.

22

. A // . B //

C

DD . //

D
KKK

KKK

%%KKK
KKK

Q1

. // Q2

Figure 2.4: Directed Ladder Graph for Figure 2.5

A

C

B

D
()
Q2

()
Q1 A

C

B

D Q2

Q1

+Ucc Gnd

1

&
=

& =

A
A

B B

C
C

D D

Q1
Q1

Q2
Q2

Ladder Diagram

Function Block Diagram

Relay schematics

Logic schematics

Figure 2.5: Ladder and Function Block Diagrams

Both graphical languages (ladder or logical diagram) were designed pri-
mary for easy inspection of a running program, because some technologies
require continuous operation to achieve higher quality of products and mal-
functions are repaired without stopping PLCs (if it is possible).

Suppose, that simple control program shown in Figure 2.5 has its output
variable Q2 connected to a drive Q2drive through an output Q2out :

Program -
Q2

Output module -
Q2out �

�
�
�Q2drive

When Q2drive does not start as expected, a called janitor first tests the drive
Q2drive and measures the PLC output. If none of the above reveals a cause
of the error, then he will have to find out, which one of input conditions
A,B,C, or D has failed. The inspection of the program, either looking into
PLC program or in its listing, offers one of possible guidelines to gain such
information. This method has advantage of low purchase cost — no special
diagnostic software need to be added to the written control program.

The ladder diagram converts the satisfying logical functions to simple
searching for a broken or unbroken path in the ladder graph that is strictly
directed from left to right, as shown in Figure 2.4. Janitors can perform it

23

A Amem

()
Amem

Amem

()
Ar Ar

Ar
Ar

A Amem

Amem

+Ucc Gnd

&
=

=

A
A=Amem

Amem

Ar= A &

Amem= A

Amem Ar = A & = 0A

Figure 2.6: Rising edge detection

without a deeper software training, because the task is analogous to solving
errors in contact arrays.

On the other side, the similarity of graphical representations to hardware
can misguide, because the both graphical languages do not emulate exactly
their corresponding hardware patterns. All parts in relay or logical circuits
operate parallel, in contrast to software emulations of ladder and function
block diagrams that are performed in predefined order: usually from left to
right, from upper to lower elements.

Simple program depicted in Figure 2.5 can be considered as the direct
replacement of relay and logical schematics, but the program for the rising
edge detection depicted in Figure 2.6 has no hardware mirror. The left
side diagrams define famous rising edge detection: the output Ar will be
set to true for one program scan if A has changed its state from false
to true, othewise Ar remains in false state. The corresponding hardware
circuits will hold Ar output permanently in false state, however Ar relay
can accidently close for short time if delayclose(Amem) > delayclose(Ar).

The graphical languages are usually stored in PLC processor as some list
of instructions that is evaluated by PLC operating system. Thus we may
consider graphical languages as some visualization of processor codes.

Instruction lists are nowadays frequently implemented as primary tool,
for example in Siemens PLCs, or at least like an alternative to a graphical
language, as in Allen-Bradley PLCs. The disadvantage of instruction lists,
in terms of a program analysis, is their dependency on PLC type.

However, as we show in the thesis, a universal base exist that allows
expressing subset of PLC instructions in a common abstract language. We
will deal with this problem in the next chapter.

24

PLC correctness

The correctness of real-time programs not only depends on the functional as-
pects of their operation, but also on the timeliness of their behavior. Tourlas
divides the PLC analysis [Tou00, pg. 18] in his thesis into two separated
questions: logical correctness and temporal correctness. Such classification is
not fully sufficient because it does not distinguish time aspects of hardware
from program. A program can show proper behavior under good config-
uration and very poor after modifying environment. Replacing fast PLC
processor by a slower type offers an example clear at first glance, but the
modification need not be such significant. For example, addition of a new
distributed I/O modul can possibly decrease scan times of inputs and out-
puts, if PLC network configuration is near its critical point [Nov01] and
another node added to network results in an exponential increasing of trans-
mission delays.

Therefore, we should distinguish three type of PLC program correctness:

logical correctness - proper functional behavior of the program that is
specified by logical or temporal logical statements without explicit
time constants ;

time correctness - timeliness behavior of the program that is specified
by logical or temporal logical statements with explicit time constants.
Time characteristics of PLC processor and its environment are ne-
glected ;

PLC correctness - verification of the program behavior on a predefined
PLC or a set of PLC types.

Lemma 2.1 Time correctness does not generally imply logical correctness
and vice versa.

Proof: The proof can be done by the example. If programs satisfies time
correctness defined by the specification ”the staten will not be reached from
state0 in time t ≤ τ”, then that says nothing about a validity of logical
correctness: ”staten will [or will not] be reached” and vice versa. 2

Lemma 2.2 PLC correctness does not generally imply time correctness and
vice versa.

Proof: If we consider simple program for powering up a lamp L after clos-
ing a switch S, then the program with single instruction L := S; does not
satisfy time correctness defined by the proposition: ”L will close with the
delay greater than 100 miliseconds after switching S”. In contrast, if PLC

25

Figure 2.7: Correctness of PLC Program

correctness is considered then the proposition could be satisfied when run-
ning the program on a very very slow PLC. 2

It follows from considerations above that each correctness forms a dif-
ferent question. PLC correctness is the most interesting case for practical
applications, but it depends on used PLC hardware and its configuration.
On the other hand, if PLC hardware is properly chosen and configured, then
delays added to I/O signals will be nearly negligible.

Under favorable conditions, time correctness specified by a set of propo-
sitions Φ, in which a finite set of time constants T = {t1, t2, . . . , tn} is
used, could imply PLC correctness Φ̄. Φ̄ contains propositions similar to
those in Φ, but with modified times T̄ = {t̄1 | t̄2, . . . , t̄n}. The number
e = maxn

i=1 |t̄i − ti| ; t̄i ∈ T̄ , ti ∈ T denotes the accuracy of the approxima-
tion PLC correctness by time correctness.

Definition 2.1 If time correctness specified by a set of propositions Φ ap-
proximates PLC correctness with a required accuracy σ then PLC is called
σ-well-designed with respect to Φ.

We must emphasize the fact that time correctness could imply PLC
correctness only if the propositions define ’reasonable’ constraints. The ad-
jective ’reasonable’ means requirements realizable by an available hardware
and for a controlled technology. Those conditions depend on many factors
and relate to control engineering know-how. Therefore, exact mathematical
definitions can be hardly given.

26

The proposition: ”L will close exactly t milliseconds after switching S”
represents an example clear at the first glance. A program can satisfy time
correctness, but PLC correctness will not be fulfilled because the require-
ment is similar to comparing a float point number by equality operator.

On the other hand, PLC correctness specified by another proposition: ”L
will close if S is switched for a time interval long from t1 to t2 milliseconds”
is questionable. It will depend not only on delays of used I/O units but
also on their sensitivity to temperature and other working conditions. If the
delays are too unstable, then no assumption about L lenght can be given.

To gain results with general validity, we will suppose σ-well-designed
PLC and exclude PLC correctness from further studies. PLC programs will
be observed as tasks executed in some variable environment, as shown in
Figure 2.7.

Modelling PLC

Good overview of PLC models was written by Mader [Mad00a] who classifies
the models according to three orthogonal criteria:

• to what extent and how PLC processor operation is modelled;

• the use of PLC timers in instruction set;

• the fragment of programming languages that is possible to analyze.

The first criterium deals with PLC cyclic behavior. Scan cycle times
depend on many complex circumstances, which give them random behavior.
In general, scan times can be expressed better like probability statements
than implicit equations. Therefore, PLC models include time characteristic
of PLC scan by the four ways:

Static PLC models do not consider scan time characteristics and they
are intended only for static analyses as in [BHLL00], where was used
abstract interpretation operating with sets of intervals, in which we
could expect the value of a variable.

Abstract PLC models describe cyclic behavior of PLC program but they
simulate all phases as operations taking place in zero time;

Implicit PLC models will follow from the abstract models if we add as-
sumption that the time of scan cycle is a constant i.e., each phase of
PLC scan takes always the same exact time;

Explicit PLC models can be obtained from the implicit models by adding
the constraint that the each scan cycle is forced to take time laying
between the lower and upper time bound. The model respects variable
durations of PLC scan as a probability distribution, example can be
found in [Die00].

27

Although the sequence above can be continued to models with more
precise PLC scan characterization, such extension have probably no practical
significance. Scan times of real PLC depend on many complex circumstances
and the time constants needed for implicit and explicit PLC models are
usually either predefined input constrains or results obtained by practical
experiments with PLC programs.

Moreover special solutions for time critical regulations are offered by
modern PLCs, as high priority periodical tasks scanned in short regular
intervals. Therefore, detailed analyses of scan times need not be primary
problem of the PLC verification.

When designing a PLC model more serious question is the presence of
timers in a recognized instruction set. If timers are not allowed the verifica-
tion is limited only to simple programs what is unsatisfactory. Practically
every real PLC program contains timers because the duration of many out-
put and input signals must be controlled. Timers substitute for incomplete
knowledge of the PLC environment.

For example, suppose that we control the transport of paper boxes on a
conveyer that has two sensors, at its begining and end. We know that every
box should leave the conveyer at most 10 second after passing the beginning
sensor. Watching for a box jam means either adding extra expensive sensors
along the conveyer or programming one timer that will check transport times
of the boxes.

2.2 Related Works

Many publications concern a verification of PLC, but few works include some
conversion method of PLC programs. We have found only three published
algorithms.

PLC conversion was studied by M. Rausch and B. H. Krogh from Carnegie
Mellon University [RK98], whose algorithm one algorithm for converting
ladder diagrams into SMV. The author supposed the following constraints
(quoted from [RK98, page 3]):

• only Boolean variables are used;

• single static assignment, that is, variables are assigned values only once
in the program;

• there are no special functions or function blocks; and

• there are no jumps except subroutines.

The similar approach was chosen by Corporate Research Center of AL-
CATEL (Marcoussis, France) and and Ecole Normale Suprieure (Cachan,
France). Their two papers [DCR+00], and [RS00] present variants of one

28

algorithm that also converts ladder diagrams into SMV (see [McM97] or
[McM93]). The last version of the algorithm also processes timers and SFC
diagrams.

The algorithm converts each rung of the ladder diagram of IEC 61131-3
standard into separated SMV module and SMV joins modules into its inner
model. This method has several limitations (quoted from [RS00, page 2]):

All contacts described in the IEC 61131-3 are taken into account,
plus TON function blocks [timer on delay], set/reset output coils
and jump instructions. 3 More precisely, we restrict ourselves to
programs where

(R1) All variables are boolean (e.g., no integer counter function
blocks),

(R2) Each LD [ladder] rung is composed of a testing part (test
contacts and combination wires) followed by an assignment
part (output coils), and

(R3) There is only one LD program in the target PLC.

The algorithm APLCTRANS described in this thesis has lesser limita-
tions that all algorithms above. Although it also supposes a PLC program
with only boolean variables and without functional blocks, it is not limited to
one language standard and one verification tool. Moreover, APLCTRANS
can process PLC programs containing more ladders, conditional subroutine
calls, conditional jumps and various timer instructions. APLCTRANS was
not extended to SFC yet, but this such modification is possible.

Chambers, Holcombe and Barnard presented X-machine [CHB01], which
performs functional compositions f5(f4(f3(f2(f1(x))))). But the authors did
not create these compositions in such way to satisfy associative law. Thus,
their algorithm requires generating trees of possible executional paths, which
can result in exponential complexity.

In the contrast, APLCTRANS always runs along only one compositional
path, even if the program generates 2n paths of possible executions i.e., the
composition of a PLC program with n instructions will requires at most only
βn composition where β ≤ 3 (see page 83).

The other works dealing with PLCs suppose that a PLC program is
already converted into usable form. Their works are only distantly related
to this thesis and we select only some references.

The timing analyzes of PLCs were done by Mader in [Mad00b] and by
Mader and Wupper in [MW99], who also published together the overview of
PLC verification problems [MW00]. Dierks published several works about
his PLC-automaton including timed behavior of PLC ([Die00], [OD98],
[DFMV98] and [Die97]).

3The previous version of the method also allowed subroutines ([RK98, page 3]).

29

The verifying of sequential PLC tasks can be found in [BM00] or [DCR+00].
PLC graphical languages are studied by Tourlas [Tou97] and [AT98b] and by
Minas [Min99], who searches semantic representation of the ladder diagrams.

Very interesting are also attempts of the opposite approach — the syn-
thesis of error free PLC programs as [AT98a] or Moby/PLC [TD98], [DFT01].

This thesis also exploits the results from semantics of applications, logics,
the theory of automata, and other works, which could be also considered as
related publications, but we will cite them into the relevant sections.

30

Chapter 3

Abstract PLC

3.1 Model of Binary PLC

In this part we present abstract models for PLC and the automaton gen-
erated by PLC program, which create the base for further reasoning about
PLCs.

The model of PLC program will suppose only binary variables and will
exclude the use of timers. This case represents the simplest eventuality in
terms of a formal analysis, nevertheless the model itself gives good theoret-
ical background for more advanced PLC programs, even PLCs with timers,
as we will show in Section 4.4.

Before introducing the model, we present definition of the alphabet gen-
erated by a set of binary variables. In this and following definitions, binary
variables will be emphasized by membership in B, the set of all variables hav-
ing binary type. The value of a binary variable b ∈ B in a state of execution
of PLC program will be denoted by JbK. It always holds JbK = 0∨ JbK = 1 for
all b ∈ B where 0 represents false value and 1 represent true value. Using
of 0 and 1 instead of boolean constants true and false agrees with common
practice in PLC programs.

Definition 3.1 Let A be a nonempty ordered set of binary variables A =
{a | a ∈ B}, then the set α(A) defined by Cartesian product {0, 1}|A| is called
alphabet generated by A.

Alphabet α(A) contains n-tuples of all possible combinations of the val-
ues that can be assigned to variables in A. The ordering of A relates each
variable to its bit in the alphabet α(A), whose cardinality of equals to 2n

where n = |A|.
Using α(), we can define the model of a simple PLC program depicted in

Figure 3.1, in which three disjoint finite sets of variables are distinguished:
inputs Σ, outputs Ω, and internal variables V . The conjunction of the
variable sets Ω ∪ V remembers a current state of PLC execution. Notice,

31

Figure 3.1: Structure of Binary PLC

that we suppose writing to the output image in the figure, because it is
ordinary memory in PLCs.

However, over against entrenched practice for PLC models found in the
literature, we will base the definition only on PLC variables S = {Σ, V,Ω}.
This approach emphasizes the facts that program’s states are unknown at
the beginning of an analysis and the program usually does not recognize all
possible combinations of inputs.

Definition 3.2 (Binary PLC) Binary PLC is the tuple

BPLC
df
= 〈Σ,Ω, V, AΣ, δP , q0〉 (3.1)

where is
Σ - a nonempty finite ordered set of binary inputs i.e., the

input image
Ω - a nonempty finite ordered set of binary outputs i.e., the

output image
V - a nonempty finite ordered set of binary internal variables

of PLC
AΣ - a nonempty subset AΣ ⊂ α(Σ) of recognized inputs;
δP - PLC program described as partial mapping:

δP (q, x) : α(V)× α(Ω)×AΣ → α(V)× α(Ω)
where q ∈ α(V)× α(Ω), and x ∈ AΣ

q0 - an initial state of PLC program q0 ∈ α(V)× α(Ω)

Nevertheless, no method capable of verifying propositions for our binary
PLC exists. Known model checkers are mainly based on searching through
the state space of an automaton. To analyze binary PLC, we must first
unfold it to an automaton.

32

Definition 3.3 (Automaton generated by binary PLC)
Let BPLC = 〈Σ,Ω, V, AΣ, δP , q0〉 be a binary PLC then the automaton gen-
erated by BPLC is the tuple

M(BPLC)
df
= 〈X,Y,Q, δ, q0, ω〉 (3.2)

where is
X - input alphabet, X = α(Σ)
Y - output alphabet, Y = α(Ω)
Q - set of the states, Q = α(V)× Y
δ - transition function defined as follows:

δ(q, x) =


δP (q, x) : for all 〈q, x〉 ∈ Q×X

such that δP is defined
q : otherwise

q0 ∈ Q - an initial state of the automaton;
ω - output function ω(〈v, y〉) = y,

where 〈v, y〉 ∈ Q and y ∈ Y and v ∈ α(V)

The automaton belongs to Moore’s family because Y depends only on
momentary state. The number of possible internal states of the automa-
ton in Definition 3.3 is the Cartesian product α(V) × α(Ω), which gives
2|Ω|+|V | states theoretically — we will derive in the further sections better
assumption for the count of the states.

In all cases, the states rapidly grow with increasing the number of vari-
ables — well-known state explosion problem. The reductions techniques are
necessary. Some of them, outlined in [BBF+01] or [CL99], allow reducing
the state space. For example, the set of all reachable states from given initial
state q0 use to be smaller than theoretical value 2|Ω|+|V | and removing such
unreachable states simplifies the automaton.

This simplification method and others have advantages and drawbacks,
of which the most serious is the fact that they do not often assure any
feasible reduction because many of them are NP-complete problems 1 and
their computability depends on an automaton in question.

In logical terms, simplifying the automaton generated by a PLC program
represents impractical process — a complex automaton is first created and
then laboriously reduced. Analyzing the PLC program offers an alternate
solution, which could have lesser computational complexity. This approach
aims at finding out the conditions, under which simplified automata can be
directly generated by PLC programs.

Another problem is Definition 3.2 that supposes a PLC program describ-
able by a deterministic function (mapping) δP . This assumption does not

1NP-complete stands for ”nondeterministic polynomial time” where nondeterministic is
possibility about guessing a solution. A problem is in NP if you can quickly (in polynomial
time) test whether a solution is correct without worrying about how hard it might be to
find the solution. If we could guess the right solution, we could then quickly test it.

33

hold for all programs in general. For example, if we utilize a random gener-
ator or another element with non-deterministic behavior in a PLC program,
then the program will be described by a stochastic automaton with tran-
sition probability [CL99]. The termination conditions of loops or recursive
functions are other serious questions.

Therefore, we must first specify a family of programming languages,
for which such assumption holds, before reasoning about simplifying the
automaton.

3.2 Abstract PLC Machine

In this section, we present abstract PLC machine (APLC machine) that
creates a universal base for modelling PLCs and converting their programs.
It will also support the main parts of this chapter, Sections from 3.3 to 3.4
concerning the transfer sets theory.

Readers, who are only interested in the conversion of PLC programs,
can overlook this section and concentrate on the next part (Section 3.3 on
page 52).

APLC machine structure follows from analysis of many PLC models of
different producers as Allen-Bradley (Rockwell Automation), Siemens, and
Omron. Several PLC families were studied for few years before outlining
the concept of the machine.

Therefore, we will not explain the reasons which have led to creating
APLC machine structure as it is. If we should give all details, we would
have to overview instructions listed (or also unlisted sometimes) in thick
manuals of many PLC processors. Such study might have been interesting
for a PLC specialist, but unreadable for anyone else probably.

Thus, we will concentrate only on theoretical questions. We hope that
the suitability of APLC machine will follow from many given propositions,
mainly from Proposition 4.2 on page 102 that a binary PLC can be mod-
elled by an automaton of Mealy’s family if and only if PLC program can be
expressed as an APLC program.

APLC machine universality will be supported by several examples, as
Examples 3.11 (page 79) and 4.2 (page 112), and also Example 4.4 (page
130), in which we outline processing timers.

We present APLC machine definition in the operational semantics, which
will be partially based on Nielson’s machine [NN99], but we will extend it
with the dump introduced in SECD machine of Ladin, described in [Gun92]
or [Ram99]. 2

2In the operational semantics, we are concerned with how to execute programs, how
the states are modified during the execution of the statements. The abstract machine
provides the implementation of a formal specification of the semantics of a programming
language and gives possibility to argue about the behavior of a PLC program. The term

34

The operational semantics is precisely selected because PLC programs
often appear as implementations of abstract machines. A sophisticated se-
mantics with a higher abstraction, for instance denotational semantics or
axiomatic semantics, could simplify reasoning about the behavior of pro-
grams but simple direct conversion rules for the instruction sets of PLCs, as
those presented in Section 3.4, could not be given and converting real PLC
program is the main goal of our approach presented thereinafter.

First we list the various syntax categories and give a meta-variables that
will be used to range over constructs of each category. For our APLC ma-
chine the meta-variables and categories, which represent terminal symbols,
are as follows:

b will range over binary variables, b ∈ B;
bexp will range over boolean expressions, bexp ∈ Bexp+

where Bexp+ is language generated by Gbexp grammar;
c will range over all allowed sequences of instructions.

The meta-variables can be primed or subscripted. So, for example,
b, b′, b1, b2 all stands for binary variables. We will also suppose similarity
between boolean and binary type and mutual automatic conversions be-
tween them defined by equations 0 ≡ false and 1 ≡ true (see also page 31).
The structure of the construct is:

Gbexp ::= 1 | 0 | b | ¬b | ¬(Gbexp)
| (Gbexp1 ∧Gbexp2) | (Gbexp1 ∨Gbexp2)
| (Gbexp1 ≡ Gbexp2) | (Gbexp1 6≡ Gbexp2)

where () denotes ordinary parentheses for assessing the priority of boolean
operations.

To specify an APLC machine, we start from its configuration in the form
〈C, freg , E, S,D〉 where

• C is code, instructions to be executed,

• freg is flag register, freg ∈ B,

• E is the evaluation stack for boolean values in freg ,

• S is storage, and

• D is dump that is either empty or it is a four tuple
〈
C ′, f ′reg , E

′, D′〉,
where C ′ is a code, f ′reg is a flag, E′ is an evaluation stack, and D′ is
another dump.

’machine’ ordinarily refers to a physical device that performs a mechanical function. The
term ’abstract’ distinguishes a physically existent PLC and its programming language
from one that is build for theoretical analysis — C. Gunter [Gun92].

35

Flag register freg is needed for evaluating boolean operations in PLCs.
Dump D represents a form of ’stack’, in which are remembered whole con-
figurations. The dump allows calling subroutines.

The code is a list C of instructions. Lists used in this thesis can be
formally defined as an ordered row C = c1 :: c2 :: . . . :: cn−1 :: cn of n
elements where :: is linking operator. In terms of data structures of computer
programming, each list is a linked list with n nodes, each node contains one
element and one link to next node, besides the last element that has no link.

Notice that, in terms of implementation, there is no major difference
between specifying the next point of an execution by a label or by a sequence
of instructions.

List are usually characterized by a pointer to their beginning i.e, by one
variable habitually with size comparable to an integer variable. Therefore,
specifying a point in memory by list or by label can be considered as fully
equipollent.

Hence, we may chose the first eventuality because the list describe better
APLC machine operations. We select the labels for APLC language in the
next section.

Any list can have arbitrary number of elements. Let us write ν for an
empty list. 3 We will also consider an element as the list with one element,
but we will distinguish between lists and elements by denoting the lists with
(possibly) arbitrary number of elements by upper-case letters and elements
(i.e., lists containing exactly one element) by lower-case letters.

Definition 3.4 Let C be a list. A sublist Cs is any middle part of the list
C = Ch :: Cs :: Ct. Ch is called prefix of C and Ct is called tail of C. If
the prefix contains only one element i.e., C = ch :: Cs :: Ct, then it is called
head of C .

Any component can be equal to ν, so ch, Ch, Cs, Ct are all sublists and
Ch is besides prefix and Ct tail of list C. For simplification of notation, we
can define ∈ relation operator for list.

Definition 3.5 Let C be a list and c an arbitrary element. If C can be
decomposed into the form C = Ch :: c :: Ct, then let us write that by c ∈ C,
otherwise c /∈ C.

The evaluation stack E is used for evaluating boolean expressions and
stores values of freg . Formally, it is a list of values E ∈ {0, 1}∗, where {0, 1}∗
denotes Kleene-closure (see page 139).

Current values of all variables and expressions depend on momentary
state of storage S. Therefore, we will use notation JbKS or JbexpKS to em-
phasize that values of b variable or bexp ∈ Bexp+ expression were evaluated
with respect to a momentary content of S.

3We hope that using ν for empty list instead of usual ’nil’ does not confuse a reader.

36

Assignment operations change values in S. We will use the common
notation S[b 7→ JbexpKS] for assigning b the result of bexp expression. Ex-
pression bexp is first evaluated with respect to storage state S and then
the new storage containing changed variable b is returned. The simplified
notation S[b 7→ n] describes assigning b a constant value n.

Binding the result of evaluation to the storage prevents misinterpreta-
tions arising from a different evaluation order of variables. For example,
let JbKS be 0. We will always suppose that after executing S[b 7→ J¬bKS]
the formula JbKS again equals to 0, because the both evaluation of b are
based on the same storage content S. To change the second result, we must
explicitly write S := S[b 7→ J¬bKS]. Now the content of S has changed and
JbKS equals to 1.

Example 3.1

If S = {a = 1, b = 0} then JaKS equals to 1. S1 := S[a 7→ JbKS] yields new
storage S1 = {a = 0, b = 0}. Now JaKS equals again to 1, but JaKS1 equals
to 0. This operation recommends some assignment a := b. But assignments
are formulas over some abstract variables, whereas S[a 7→ JbKS] is the directive
how this assignment should be evaluated and where are taken data from.

The semantics of the abstract machine is given by the operational se-
mantics and specified by a transition system. The configuration have the
form 〈C, freg , E, S,D〉 as described above and transition relations B show
how to execute the instructions:

〈C, freg , E, S,D〉 B
〈
C ′, f ′reg , E

′, S′, D′〉 (3.3)

The idea is that one step of execution will transform the configuration
〈C, freg , E, S,D〉 into

〈
C ′, f ′reg , E

′, S′, D′〉. The relations are defined by the
axioms of Table 3.1, in which instruction codes are emphasized by Caps.

Example 3.2

We demonstrate APLC machine on simple operation that could be written as
Pascal-like command ’x:=(x AND y);’. Beginning configuration H will be trans-
formed (we use [] to emphasize the elements of C list) as:

H =
〈
C = [Load x] :: [Or y] :: [Store x], freg = 1,
E = ν, S = {x = 0, y = 1}, D = ν

〉
B 〈[Or y] :: [Store x], freg = 0, E = ν, S = {x = 0, y = 1}, D = ν〉
B 〈[Store x], freg = 1, E = ν, S = {x = 0, y = 1}, D = ν〉
B 〈ν, freg = 1, E = ν, S = {x = 1, y = 0}, D = ν〉+ Terminate

37

Initialization of evaluation
〈Init :: C, freg , E, S,D〉 B 〈C, 1, ν, S,D〉

Operation with flag register
〈Load bexp :: C, freg , E, S,D〉 B 〈C, JbexpKS,E, S,D〉
〈And bexp :: C, freg , E, S,D〉 B 〈C, freg ∧ JbexpKS,E, S,D〉
〈Or bexp :: C, freg , E, S,D〉 B 〈C, freg ∨ JbexpKS,E, S,D〉
〈Not :: C, freg , E, S,D〉 B 〈C,¬freg , E, S,D〉
〈TAnd :: C, freg , top :: E,S,D〉 B 〈C, freg ∧ top,E, S,D〉
〈TAnd :: C, freg , ν, S,D〉 B 〈C, 0, ν, S,D〉
〈TOr :: C, freg , top :: E,S,D〉 B 〈C, freg ∨ top,E, S,D〉
〈TOr :: C, freg , ν, S,D〉 B 〈C, freg , ν, S,D〉

Assignments
〈Store b :: C, freg , E, S,D〉 B 〈C, freg , E, S[b 7→ freg], D〉
〈Set b :: C, freg , E, S,D〉 B 〈C, freg , E, S[b 7→ (freg ∨ JbKS)], D〉
〈Res b :: C, freg , E, S,D〉 B 〈C, freg , E, S[b 7→ (¬freg ∧ JbKS)], D〉

Rising and falling edge detection
〈REdge b :: C, freg , E, S,D〉 B 〈C, freg ∧ J¬bKS,E, S[b 7→ freg], D〉
〈FEdge b :: C, freg , E, S,D〉 B 〈C,¬freg ∧ JbKS,E, S[b 7→ freg], D〉

Program control (note: brackets [] only emphesize the heads of codes)

〈[Jp Cnew] :: C, freg , E, S,D〉 B 〈Cnew, freg , E, S,D〉
〈[Jpc Cnew] :: C, 1, E, S,D〉 B 〈Cnew, 1, E, S,D〉
〈[Jpc Cnew] :: C, 0, E, S,D〉 B 〈C, 0, E, S,D〉
〈[Js Cnew] :: C, freg , E, S,D〉 B 〈Cnew, 0, ν, S, 〈C, freg , E,D〉〉
〈[Jsc Cnew] :: C, 1, E, S,D〉 B 〈Cnew, 0, ν, S, 〈C, 1, E,D〉〉
〈[Jsc Cnew] :: C, 0, E, S,D〉 B 〈C, 0, E, S,D〉
〈End :: C, freg , E, S,D〉 B 〈ν, 1, ν, S,D〉

Loading dump〈
ν, freg , E, S,

〈
C ′, f ′reg , E

′, D′〉〉 B
〈
C ′, f ′reg , E

′, S,D′〉
Termination condition
〈ν, freg , E, S, ν〉 B 〈ν, 1, ν, S, ν〉+ terminate

Manipulations with evaluation stack
Table continues in Table 3.2

Table 3.1: Operational Semantics for APLC machine - Part I.

38

Table continues from Table 3.1

Manipulations with evaluation stack
〈Push :: C, freg , E, S,D〉 B 〈C, freg , freg :: E,S,D〉
〈EPush bexp :: C, freg , E, S,D〉 B 〈C, freg , bexp :: E,S,D〉
〈Pop :: C, freg , top :: E,S,D〉 B 〈C, top,E, S,D〉
〈Pop :: C, freg , ν, S,D〉 B 〈C, 0, ν, S,D〉
〈Dup :: C, freg , top :: E,S,D〉 B 〈C, freg , top :: top :: E,S,D〉
〈Dup :: C, freg , ν, S,D〉 B 〈C, freg , ν, S,D〉
〈Drop :: C, freg , top :: E,S,D〉 B 〈C, freg , E, S,D〉
〈Drop :: C, freg , ν, S,D〉 B 〈C, freg , ν, S,D〉
〈FSwp :: C, freg , top :: E,S,D〉 B 〈C, top, freg :: E,S,D〉
〈FSwp :: C, freg , ν, S,D〉 B 〈C, 0, freg :: ν, S,D〉
〈ESwp :: C, freg , top :: tnx :: E,S,D〉 B 〈C, freg , tnx :: top :: E,S,D〉
〈ESwp :: C, freg , ν, S,D〉 B 〈C, freg , ν, S,D〉

Table 3.2: Operational Semantics for APLC Machine - Part II.

where logical constants 1 or 0 written in bold font indicate changed values by
last step.

Table 3.1 does not present a minimal set of instructions. Apart from
using bexp ∈ Bexp+ instead of a step-by-step evaluation of boolean ex-
pressions, there are defined the operations that could be composed from
primitives. For instance, Load bexp is equivalent to ” Or 1 ; And bexp;”

This extended instruction set gives possibility for the optimizations of
APLCTRANS algorithm for the conversion of PLCs, that will be presented
in Section 3.4 (see page 73).

The real implementation of APLC machine can use a subset of the listed
operations. If we prove all theorems in this chapter for the extended set of
instruction they will certainly hold for every its subset.

Definition 3.6 Let H = 〈C, freg , E, S,D〉 be an APLC configuration. If
C 6= ν then top instruction of H is the instruction ca given by C = ca :: C2,
otherwise top instruction of H equals ν. Similarly, if C2 6= ν, then next
instruction of H is the instruction cb defined as C = ca :: cb :: C3 or C2 =
cb :: C3, otherwise next instruction of H equals to ν.

Top instruction is also the head of list C.

39

Definition 3.7 (APLC step) Let H = 〈C, freg , E, S,D〉 be an APLC con-
figuration. Transforming H into H ′ =

〈
C ′, f ′reg , E

′, S′, D′〉 (denoted as
H B H ′), by the application of one axiom from Table 3.1, is called APLC
machine step (abbreviated APLC step). H ′ is successor of H, denoted as
succ(H). Let ca be top code of H satisfying ca 6= ν then the APLC step is
called APLC instruction step.

Definition 3.8 (APLC scan) Let H0 be a configuration 〈C0, 1, ν, S0, ν〉,
where C0 is an initial code and S0 represents an initial content of storage.
Let SCH0 = H0 :: H1 :: . . . :: Hn be the list of sequential configurations,
abbreviated as sequence, in which Hi+1 = succ(Hi) for all 0 ≤ i < n, then
SCH0 is called APLC scan of configuration H0. Moreover, if SCH0 is finite
and Hn = 〈ν, 1, ν, Sn, ν〉 then SCH0 is called terminal APLC scan.

Example 3.2 has performed 3 instruction steps before the termination.
Thus H has terminal APLC scan.

We will reduce all further considerations to deterministic APLC ma-
chines which allow to predict results of APLC steps with certainty i.e., any
their configuration contains all necessary information for unambiguous cal-
culation of its successor.

Definition 3.9 APLC machine is call deterministic APLC machine if set
SC+

H = {SCH | SCH is a terminal APLC scan of H} contains one element.

Although the requirement above could look as a triteness at first glance
we will show in the following paragraphs that it is too strong to be practi-
cally satisfied, because deterministic APLC machine must not contain any
element with stochastic behavior.

An APLC machine will be non-deterministic, for instance, if an overflow
of its evaluation stack happens during APLC scan of H and this event either
terminates the scan with an exception, in that case SC+

H will be empty, or
adds a random value to the stack so there will be more possible APLC scans
of H.

Lemma 3.1 APLC machine is deterministic if it satisfies the following:

• its evaluation stack has infinite length,

• the number of possible dumps is unlimited, and

• evaluations of expressions and manipulations with storage are always
unambiguous and they never abort APLC scan.

Proof: The proof has two parts. First we analyze possible sources of un-
expected termination, then we prove uniqueness of APLC scan by contra-
diction. The first part of the proof is based on Definition 3.9 and Table 3.3,

40

and also on the understandable assumption that code C contains only de-
fined codes, otherwise discussions about any behavior of the program have
no sense.

APLC instructions do not allow any direct manipulations with the dumps
or program memory with exception of variables, so they can never accidently
jam instruction codes. The definition rule out the interruptions of program
by the evaluation of some inconsistent expression (e /∈ Bexp+) and the over-
flow evaluation stack S or dumps i.e., we suppose that there will be always
enough place in the dump and S to add new values.

The analysis of operations loading top of the evaluation stack (Pop,
FSwp, TAnd, and TOr) shows that APLC machine recognizes stack un-
derflows i.e., the attempts of reading values from empty stack, and it has
always deterministic behavior in these situations. Dump underflows are im-
possible because the dump D is loaded when code C is empty, and the
concurrent emptiness of the dump and code terminate scans regularly.

Now we must prove that SC+
H contains exactly one sequence of configura-

tions under the assumptions described above. SC+
H is certainly non-empty

— it contains at least one sequence beginning with H. Let, on a con-
trary, be H an APLC configuration whose SC+

H contains more sequences.
If SC,SC′ ∈ SC+

H and SC 6= SC′ then SC and SC′ only differ in their
tails because the both sequences begin with H. We can write them as lists
SC = SCh :: SCt, SC′ = SCh :: SC′

t where SCt 6= SC′
t.

Evidently SCh 6= ν because it begins with H, so it can be written as
SCh = SCh0 :: Hh, Hh 6= ν, where SCh0 is some sequence and Hh end
configuration of sequence SCh. The configuration Hh should branch into two
different configurations Ht and H ′

t. They are prefixes of SCt = Ht :: SCt2

and SC′
t = H ′

t :: SC′
t2, where Ht = succ(Hh), H ′

t = succ(Hh), and Ht 6= H ′
t.

We prove that Ht and H ′
t exist and are non-empty. First we analyze the

configurations with empty code. Hh differs from configurations in the form
〈ν, freg , E, S, ν〉, because those terminates APLC scan and cannot create two
different successors.

Hh also differs from
〈
ν, freg , E, S,

〈
C ′, f ′reg , E

′, D′〉〉 because those load
the dump thus they have only one successor defined by a content of the
dump. Inspecting other axioms in Table 3.3 we find out that their applica-
tion also create successors of Hh, therefore Ht and H ′

t are non-empty.
In the previous paragraph, we have ruled out all configurations with

empty codes C, hence Hh will have non-empty top code ch. Code ch is
clearly not End code. Now in Table 3.3, there remain only instruction steps
of APLC machine. They transform Hh into new configuration, which is fully
determined by ch and the contents of storage and evaluation stack of Hh.

Supposing identical results for identical evaluations of assignment opera-
tion S[b 7→ JbexpKS], bexp ∈ Bexp+, was the primary assumption for APLC
machine given in Page 37. Therefore Ht must always be equal to H ′

t and we
have a contradiction. 2

41

’AProgram’ ::= ’Blocks’
’Blocks’ ::= ’ABlock’ | ’ABlock’ : ’Blocks’
’ABlock’ ::= ’End-instruction’

| label : ’End-instruction’
| ’AStatement’; ’ABlock’
| label : ’AStatement’; ’ABlock’

’AStatement’ ::= ’Op-instruction’ | ’Control-instruction’
| ’End-instruction’

’Control-instruction’ ::= ’Control-code’ label
where ’Control-code’ ≺ label
(see Definition 3.10 on page 42)

’Op-instruction’ ::= Init | Load bexp
| And bexp| Or bexp| Not
| TAnd | TOr
| Push | EPush bexp| Dup
| FSwp | ESwp | Pop | Drop
| Store b | Set b | Res b
| REdge b | FEdge b

’End-instruction’ ::= End

’Control-code’ ::= Jp | Jpc | Js | Jsc
where Instruction codes are defined
in Table 3.1 and bexp ∈ Bexp+.

Table 3.3: Grammar of APLC Language

APLC machine expresses an implementation and allows wide rage of pos-
sible programs. To make exacter propositions, the syntax of APLC language
that machine executes must also be given. Its grammar is listed in BNF-style
(Backus-Naur Form) in Table 3.3. Non-terminals are single quoted.

In the following definitions, we will also use non-terminals names to de-
note languages, which were generated from homonymous non-terminal sym-
bol of the grammar i.e., AProgram will denote language generated from non-
terminal symbol ’AProgram’, similarly we will use AStatement for language
generated from non-terminal symbol ’AStatement’, similarly for ABlock.

To specify destination addresses for jumps and calls in the language, new
semantic category was added to b and bexp (see page 35):

label is any identifier unique within one program in AProgram.

and it is utilized together with ≺ relation.

Definition 3.10 Let L be a language and s ∈ L any string. If s1, s2 are two

42

substrings of s then s1 ≺ s2 iff s = a.s1.b.s2.c, where a, b, c are substrings of
s, otherwise s1 ⊀ s2.

Relation≺ of substrings was used in the table to determine the constraint
for the labels that stand for the operands of jumps and calls. The relation
violates BNF grammar rules, on the other side it simplifies APLC language
definition.

In case of APLC language, ≺ relation reflects the order, in which state-
ments are physically concatenated in the source code of an APLC program,
and it serves for excluding jumps and calls to backward addresses in terms
of some ordering of APLC statements.

Example 3.3

Load b1;
Jpc label1; Here, it holds that this Jpc ≺ label1
And b2;

label1: Store b1;
Jpc label1; Here, this Jpc ⊀ label1
End

The relation ≺ will also allow to specify a simple termination condition
for APLC programs and moreover, their effective composition in Section 3.4.
To prove APLC termination, we must first present the following definitions.

Definition 3.11 (Compilation.) Let AL ∈ AProgram be some APLC
program. Code C of configuration H = 〈C, 1, ν, S, ν〉 of APLC machine
is called compilation of AL with respect to storage S, denoted as AL S

⇀ C,
if C satisfies following rules:

• there exists a mapping, m : Label→ Storage, assigning every variable
unique location in storage S,

• each string generated by ’AStatement’ rule is converted according to
Tables 3.1 and 3.3,

• for any s1, s2 ∈ AL two strings generated by ’AStatement’ rule, it holds
that then s1 ≺ s2 implies C = Cp :: c1 :: Cs :: c2 :: Ct where Cp, Cs, Ct

are (possibly empty) sublists of C and c1, c2 are the codes which were
converted s1, s2 to, and

• each labeli is replaced by list Ci, C = Cpfxi
:: Ci, where Cpfxi

is a
prefix of C and Ci begins with the code, to which was converted the
statement labeled by labeli.

In other word, all statements are correctly converted to APLC machine
codes, their ordering in AL is preserved in C, and labels are decoded to lists.

43

The previous perspicuity of the compilation is rough. To create an exact
definition, we should formally specify its algorithm. However, we believe
that the correspondence between APLC machine and its language syntax is
clear from the both tables and the omitting simple but long specifications
will not ever invalidate theorems given hereafter.

Proposition 3.1 Let AP ∈ AProgram be a finite APLC program with
AP

S
⇀ C compilation. If a deterministic APLC machine is used for in-

terpreting C, then APLC scan of AP is always terminal for any content of
the storage S.

Proof: The proof proceeds by induction on the length of APLC program.
The base case AP 0 is the program containing only one instruction End

and with compilation AP 0 S
⇀ C0. The axiom for End assigns ν to the

code of APLC machine what results in certain termination for C0 according
to the last rule in Table 3.1. Therefore AP 0 always terminates after a
finite number of APLC steps and the same condition evidently holds also
for the set of all possible non-empty tails of C0, which can be defined as
Tails(C0)

df
= {Ca | C0 = Ca :: Cb, Cb 6= ν}. C0 containing only End

instruction has Tails(C0) with one element {End}.
The inductive step is carried out by proving the consequent from its an-

tecedent. Let AP i be an APLC program with compilation AP i S
⇀ Ci whose

all Tails(Ci) have terminal APLC scans. We create AP i+1 by an inserting
APLC instruction before the program. The conditions in Definition 3.11 as-
sure keeping the order of instructions so new instruction will be translated
to code c placed before Ci. We obtain Ci+1 = c :: Ci and prove that Ci+1

has again terminal APLC scan.
To prove that, we divide APLC instructions into four disjoint groups.

The first trivial possibility represents End instruction — Tails(Ci+1) will
have certainly terminal APLC scans.

The same will hold for the group incorporating all instructions marked
in Table 3.3 as ’Op-instruction’. They perform an evaluation and create a
new configuration, which has Ci as the code and changed content of flag
register and evaluation stack.

Deterministic APLC machine has foreseeable scan with one possible se-
quence for one content of storage. Initial values of evaluation stack or flag
register can change values in the storage obtained after APLC scan but they
cannot alter finality of the scan, as we have discussed in Lemma 3.1. There-
fore, changing initial values of evaluation stack or flag register will preserve
terminal APLC scan condition for all Tails(Ci+1).

The third group consists of jump instructions Jp and Jpc. If flag register
equals to 0 then Jpc will behave like an instruction in ’Op-instruction’
group, for which we have already proved terminal APLC scan. Otherwise,

44

the jumps will create new configuration from previous one by replacing the
code by their operand. According to the conditions for labels specified in
Definition 3.10, the new code sequence can be only an element of Tails(Ci).
All Tails(Ci) have terminal APLC scans and so inserting jump will create
Ci+1 satisfying the same condition.

The last possibility represents the instruction Js and Jsc. If flag register
equals to 0 then Jsc behaves as Jpc, proved in paragraphs above, otherwise
Jsc is equivalent to Js, so we can limit our reasoning only to Js.

In this proof only, let us write for the current configuration, in which
is Js code evaluated, Ȟ i+1

0 =
〈
(Js Ci+1

Js) :: Ci, freg , E, S, ν
〉
, where Ci+1

Js

denotes an operant of Js code and Ci+1 = (Js Ci+1
Js) :: Ci. The dump

is empty because now APLC scan begins with Js code inserted by this
case of the induction. Js code transforms configuration Ȟ i+1

0 into Ȟ i+1
1 =〈

Ci+1
Js , 1, ν, S,

〈
Ci, freg , E, ν

〉〉
.

The both conditions for labels mentioned when proving jumps and the
induction’s assumption assure that Ci+1

Js ∈ Tails(Ci). Therefore Ci+1
Js has

terminal APLC scan, which consists of SC(H i+1
1) = H i+1

1 :: H i+1
2 :: . . . ::

H i+1
n where H i+1

1 =
〈
Ci+1

Js , 1, ν, S, ν
〉

and H i+1
n = 〈ν, 1, ν, S, ν〉 (Definition

3.8). This terminal APLC scan is assured for any content of storage S. We
must prove that the scan remains terminal for Ȟ i+1

1 .
Comparing H i+1

1 with Ȟ i+1
1 reveals that the configurations only differ in

their dumps. H i+1
1 has its dump equal to ν. In contrast, Ȟ i+1

1 contains the
dump, which we denote by Ď =

〈
Ci, freg , E, ν

〉
.

If SC(H i+1
1) includes only codes that do not manipulate with the dump

then SC(Ȟ i+1
1) will consist of the same configurations with the exception

of replacing their ν dumps by Ď. H i+1
n changes into Ȟ i+1

n =
〈
ν, 1, ν, S, Ď

〉
,

to which now the penultimate axiom in Table 3.1 will be applied instead
of the last terminating axiom, and dump Ď will be loaded. We obtain the
configuration

〈
Ci, freg , E, S

′, ν
〉
, for which we have already shown that has

terminal APLC scan when proving ’Op-instruction’.
Now, situations only remained, in which the dump is changed during a

subroutine evaluation. We can immediately exclude the last axiom in Table
3.1, because it can be applied only at the end of SC(H i+1

1). The penultimate
axiom can be also crossed out because if a configuration satisfied condition
for loading dump and did not terminate sequence SC(H i+1

1), there must
exist an associated configuration, which created this loaded dump i.e., the
configuration with Js ot Jsc. Similar consideration can be also given for
the remaining cases — codes End, Js, and Jsc.

We have proved that AP i+1 has terminal APLC scan and because any
program can be created by inserting instructions each AProgram has termi-
nal APLC scan if deterministic APLC machine is used. 2

45

3.2.1 Discussion

Proving terminal scans for every AProgram was possible due to the syntax
of APLC language, which excludes loops and recursive procedures. In this
part, we will consider these limits and also practical usability of the terminal
scan proposition.

Loops.

The absence of loops in AProgram could weighty reduce any usability of most
programming languages, but PLC programs contain loops rarely. There are
three main reasons not to program them in PLCs:

• A troubleshooting of a running technology is more difficult if PLC
program contains loops,

• loops can prolong PLC scan whose time is strictly limited by the re-
quirements for regular updating of inputs and outputs, and

• cyclic PLC behavior encloses each AP ∈ AProgram inside the endless
loop maintained by PLC scan and AP is executed in the form similar
to a Pascal program:

repeat
AP ;
until false;

Thus any loop in AP can be replaced by a new algorithm, which
performs one evaluation of the operations inside the loop during every
PLC scan. This modification does not significantly prolong PLC scan
and always exists for any for, repeat ... until, or while loops of the
structural programming languages.

Therefore, PLC programmers are mostly asked not to create loops. 4

Naturally, some operations require a looping to keep code simple because
their primary substance is based on cycling, like initializations or moving
data blocks. For such cases, PLCs usually contain macro instructions capa-
ble of programming these manipulations by one command. 5 These instruc-
tion have clear termination conditions and can be mostly decomposed into
sequences of APLC instructions. For instance, moving variables is equivalent
to several assigning operations.

4The author of the thesis had cooperated on writing industrial PLC programs, in which
were forbidden not only loops, but also jumps or subroutines with conditional execution
i.e., the instruction with behavior similar to APLC codes Jsc or Jpc.

5For instance, PLC type ’PLC 5’ offers also special ’file instructions’ that also allow
providing data manipulations asynchronously with PLC scan [Roc98, pg. 109].

46

Recursive subroutines.

APLC programs do not allow recursive calls as most of manufactured PLCs
so this limit does not reduce primary purpose of APLC programs, which were
presented mainly as the universal abstraction for expressing PLC programs.

Besides, we could present nearly similar considerations on calls as those
discussed for jumps. Therefore, subroutines are mainly used for organiz-
ing PLC programs into smaller blocks. Conditional calls are programmed
sporadically.

Complexity of Terminal Scan.

We have proved that APLC programs have terminal APLC scans. The
question we will now ask is how many APLC instruction steps will be done
before finishing APLC scan.

Lemma 3.2 Let AP ∈ AProgram be an APLC program. If the number of
instructions in AP equals to n, then scan of AP will at most consist of 2n−1
instruction steps.

Proof: We prove lemma by the construction of worst case APLC program.
Any APLC program must contain at least 1 instruction End according to
syntax (see Table 3.3 on page 42), so n ≥ 1. Instruction Js is the only one
capable of increasing the number of APLC steps.

We create program as long sequence of n instructions Js, which will be
terminated by End instruction as required by APLC syntax. Every Js calls
its next Js instruction as shown in Table 3.4 (see page 48).

First n instructions Js adds one execution of itself and induces double
execution of the following instructions. The last End induces two steps —
clearing the code and loading the dump but loading dump is not counted as
an instruction step (Definition 3.7). Thus total number of instruction steps
is:

1 + 2(1 + 2(. . . (1 + 2(1 + 2) . . .))︸ ︷︷ ︸
n−1 addition operators

=
n−1∑
i=1

2i = 2n − 1 where n ≥ 1 (3.4)

where inner term (1 + 2) includes the both last Js and End instruction 2

The result of the lemma above is overwhelming and devalues Proposition
3.1. But manufactured PLCs allow usually limited number of nesting calls.
In this case the number of instruction steps is smaller, but still huge.

47

Js label1
label1 : Js label2
label2 : Js label3

. . .
labeli−1 : Js labeli
labeli : Js labeli+1

. . .
labeln−2 : Js labeln−1

labeln−1 : End

Table 3.4: Worst Case APLC Program

Js label1
Js label1
. . .
Js label1

m1

End

label1 : Js label2
Js label2
. . .
Js label2

m2

End
. . .

labelk−1 : Js labelk
Js labelk
. . .
Js labelk

mk−1

labelk : TAnd
TOr
. . .
TAnd

 mk× any ’Op-instruction’

End

Table 3.5: Worst Case APLC Program with Nesting Limit

48

Lemma 3.3 Let AP ∈ AProgram be an APLC program with n instructions
different from instruction steps End and satisfies the limit of at most m
nested calls. If we denote by k = min(m+ 1, n

e), where e stands for Euler’s
constant, then APLC scan of AP will contain at most

(
n
k

)k instruction steps
different from instructions steps End, Js, and Jsc.

Proof: Using similar approach as in the previous lemma we create the worst
case APLC program. To satisfy limit of nested calls, we divide the program
into k blocks. Each block 1 ≤ i < k contains mi instructions that call the
next block and are terminated by one End with the exception of k−1 block
that continues to k block. Last block k consists of mk instructions belonging
to ’Op-instruction’ group.

We are only interested in rough approximation now. To obtain easy
solution, we solve equations in real domain and consider only the steps done
in the last block with mk ’Op-instruction’ i.e., the instruction providing
manipulation with data. APLC steps of End and Js will not be counted.
We will consider them in Proposition 3.2 given below.

The program has structure shown in Table 3.5. Its 1st block invokes
2nd block m1 times, that calls 3rd block m2 times and so on, until the
last block executes mk instructions. The total steps are determined by the
equation

∏k
i=1mi with the constraint n =

∑k
i=1mi. By substituting the

constraint and using partial derivatives with respect to mi, we find out that
the equation reaches the extreme if mi = mj for all i, j.

Therefore, the number of steps is equal to
(

n
k

)k. The value of the func-
tion is growing with increasing k, the first derivative with respect to k is
positive for 0 < k < n

e , where e denotes Euler’s constant. The point k = n
e

is the extreme but k cannot exceed m+ 1 (limit of m nested calls plus the
operations at the last block), so we use k = min(m+ 1, n

e). 2

We summarize the both previous lemmas in the proposition:

Proposition 3.2 The number of steps of APLC program with n instruc-
tions is EXPTIME task with complexity O(2n−1). If nested calls are limited
to m levels then the task turns to P-problem with complexity O(nm+1). 6

Proof: We have already proved in Lemma 3.2 that solving number of APLC
program steps has exponential complexity. In Lemma 3.3, we show that
limiting nested calls has polynomial complexity if we take in account only

6The terms are taken from computational complexity theory. EXPTIME means a
problem that can be solved in exponential time. P-problems can be solved in polynomial
time. O() is Landau’s symbolism named after the German number theoretician Edmund
Landau who invented the notation for describing the asymptotic behavior of functions.
Big O tells us at which order a function grows or declines. If c is a constant then O(1)
means a constant, O(n) linear , O(nc) polynomial, and O(cn) exponential complexity.

49

’Op-instruction’ instruction steps. So we must only prove that polynomial
complexity holds also for all steps.

We use the same worst case program shown in Table 3.5, in which k =
m + 1 (the limit of nested calls). The program will be divided into blocks
with lengths m1,m2, . . . ,mm+1 that need not be uniform — this extreme
exists only under the simplified conditions in Lemma 3.3.

Each mi can be expressed as a fraction of n, mi = βin, where βi are real
numbers and

∑m+1
i=1 βi = 1 because

∑m+1
i=1 mi = n.

Blocks 1 ≤ i ≤ m add to the total number of steps βin instructions Js,
one End and βin executions of the following block. The last block adds
only itself i.e., βm+1n steps. The number of steps is equal to:

1 + β1n+ β1n(1 + β2n+ β2n(. . . (1 + βmn+ βmn(βm+1n)) . . .))︸ ︷︷ ︸
m+1 () operations

(3.5)

All βi are real constants so the equation can be rewritten into a polyno-
mial, whose term with highest power equals to nm+1

∏m+1
i=1 βi. Therefore,

the complexity of the task is polynomial with O(nm+1).
2

The nesting limit varies with PLC type. For example, Allen-Bradley
PLC-5 family of PLCs allows only 8 nesting subroutines [Roc98, pg. 178]
and the same limit has also Siemens S7-200 family of PLCs [Sie02, pg.
203], but it is not a general value certainly. If we substitute this limit into
Lemma 3.3 we obtain formula

(
n
9

)9 for n > 9e. The value equals to 9846 for
a program with 25 instructions different form End (25 is first integer value
satisfying condition n > 9e). The real number of steps will be slightly less
because the sizes of the blocks must be integer values so the expression does
not reach its extreme.

The count of steps growing with 9th power will easily cause the state
explosion problem. If we concentrate on programs satisfying lesser nested
limit we will obtain better complexity condition.

The other important limit of real PLC program is automatic check of
PLC scan by external timer, which is commonly called ”watch dog”. This
feature is probably built in every manufactured PLC. 7

The watch dog measures time passed from the last updating inputs and
outputs (I/O scan). If PLC processor does not begin new I/O scan before
elapsing predefined timer constant, PLC program is stopped and a watch
dog error is announced. So the watch dog supervises the cyclic behavior of
PLC scan.

If we suppose analyzing a program designed for controlling a technology,
not for creating a contraindication, then the program could probably have

7The author does not know any PLC without a watch dog done by some method.

50

a terminal scan with a ’reasonable’ value of steps. 8

To assure that terminal scan has generally lower complexity, the set of
APLC instruction must be either reduced (deleting jumps and calls also
removes all problems) or extended by the constraints, which will prohibit
building program constructions having higher complexity in the term of
analysis. However, this approach could complicate converting PLC program
to APLC language, therefore we will prefer higher universality even if it is
paid by weaker computability propositions.

Moreover, we will show in the further sections that the number of instruc-
tion steps is not the main criterion. The conversion of an APLC program,
which has with n instructions and 2n − 1 instruction steps, into automaton
can still have O(n) complexity under some hopeful conditions.

8This raises certainly the question how big could be this ’reasonable’ value? Let us
assume that common PLC scan takes around 50 ms (i.e. sample rate 20 Hz of I/O) and
ordinary PLC processor could execute 2000 bit instruction during 1 millisecond on average.
We obtain 100000 instruction steps. The number represent raw informative value for worst
case scan. In practice, we can expect much lesser values, because complex instructions,
for example subroutines, take more time (PLCs are relatively slow computers.)

51

3.3 Transfer Sets

3.3.1 Overview of Goal

To express APLC program scan as a mapping δP according Definition 3.2, we
need to convert APLC instructions to proper forms, which can be mutually
composed to δP .

States of APLC machine are determined by its storage S. If b ∈ S is
any boolean variable then its value can be always observed as an assignment
b := JeKS, where e is an expression (evaluated with respect to a momentary
state of storage S) that embodies some dependency of b value on another
variables and equals to b variable itself in the simplest case i.e., b := JbKS
(see also page 36).

Any state of APLC machine is transfered to subsequent one during an
APLC instruction step. The step assigns new values to some subset of S
variables and therefore each APLC instruction can be represented by one or
more assignments, which will be called t-assignments (transfer assignments)
in this thesis.

Let the evaluation method for a set of t-assignments be: ”We first eval-
uate the expressions of all t-assignments and store their results in temporary
variables. Finally, we assign the temporary variables to variables specified
on left sides of the t-assignments.”

For instance, the instructions of APLC program ”REdge x; Set z;”
performing the operations: ”set z to 1 on the rising edge of x”, are equivalent
to two sets of t-assignments:

XREdge x = {(freg := JrFreg ∧ ¬xKS), (x := JfregKS)}
XSet z = {(z := Jfreg ∨ zKS)}

where J KS only emphasizes an evaluation based on a momentary content
of APLC storage S.

The evaluation method above, which will be precisely defined in the next
subsection, gives correct results not only for XREdge x and XSet z but also
for more complex APLC instructions as FSwp, which is describable by the
t-assignments: 9

XFSwp = {(freg := Je1KS), (e1 := JfregKS)}

Employing the conversion we can express very complex operations as
some sets of t-assignments. The main question considered in this chapter is
how to compose them.

If XREdge x and XSet z are composed by some ’tricky’ substitution to
XScan = XSet z◦XREdge x we obtain t-assignments for the both instructions,

9XFSwp leads to the program that is if written in Pascal syntax: tmp freg:=e1;

tmp e1:=freg; freg:=tmp freg; e1:=tmp e1; There is the redundant usage of tmp freg

variable, but the swap works correctly.

52

from which we calculate δP . Notice inverse order of the both sets compare
to APLC program. 10

Naive algorithm of X evaluation could look as follows.

Naive algorithm

1. Each APLC c instruction with its operand is expressed as some set of
t-assignments Tc.

2. The sequence consisting of codes Tci executed in i APLC steps is cre-
ated and t-assignments of APLC program scan are calculated as com-
position TScan = Tcn ◦ Tcn−1 ◦ . . . ◦ Tc1

3. Branching of conditional jumps and subroutines compose as
Taf ◦ ((cond ∧ Ttrue) ∨ ((¬cond) ∧ Tfalse)) ◦ Tbf

where Tbf and Taf are t-assignments of operations before branching
and after joining the both branches, and cond represents branching
condition.

The algorithm outlined in [Šus02] works but if we consider worst case pro-
gram in Table 3.4, which does not manipulate data at all, we see that naive
algorithm will learn this fact after calculating 2n − 1 compositions where n
represents the number of instructions.

Moreover, applying our naive algorithm to another worst case APLC pro-
gram with nesting limit (Table 3.5 on page 48) leads to multiple evaluations.
Last block compositions are calculated

(
n
k

)k−1 times, the compositions of
the previous block

(
n
k

)k−2 times and so on.
Naive algorithm resembles ill recursive program, which repeatedly eval-

uates already evaluated expressions, as for example well known recursive
definition of Fibonacci function [Gra96, pg. 116].

Fib(0) = Fib(1) = 1
Fib(n) = Fib(n− 1) + Fib(n− 2)

To improve naive algorithm, some parts of APLC program should be
precalculated and skillfully composed as prepared partial functions, but,
unfortunately, ordinary composition does not generally belong among asso-
ciative operations, as we will show in Lemma 3.6 on page 58.

Therefore we must create a proper composition with associative property.
We begin this by introducing the representation of variable values as t-
assignments and by outlining necessary definitions and properties used for
associative transfer sets.

10Although defining ◦ composition operator in inverse order as XREdge x ◦XSet z would
better match APLC machine operation we do not change ’tradition’ established in formal
language literature and further below we define the composition according to established
notation.

53

3.3.2 Weak Composition of T-sets

Definition 3.12 Let bexp ∈ Bexp+ be any expression generated by Gbexp
grammar (see page 35) then the domain of bexp is defined:

dom(bexp)
df
= {bi ∈ B | bi is used in bexp}

Because Bexp+ grammar does not contain ε (see page 35), bexp is always
non-empty, but its domain will be empty if bexp is a constant.

Definition 3.13 Let b ∈ S by any boolean variable from a finite non-empty
storage S ⊂ B, bexp ∈ Bexp+ be any expression satisfying dom(bexp) ⊂ S,
and b := JbexpKS be the assignment operation of bexp (evaluated with respect
to S) to b variable. We define

t-assignment: b̂JbexpK df
= b := JbexpKS

domain of t-assignment: dom(b̂JbexpK) df
= dom(bexp)

codomain of t-assignment: co(b̂JbexpK) df
= b

T-assignment b̂JbexpK is called canonical t-assignment if bexp ≡ b. We
denote the set of all t-assignments for S variables by B̂(S).

To manipulate with t-assignments without cumulating too many sym-
bols, we have used special notation for variables and their t-assignments.
We have denoted the t-assignment by the same label as the variable, which
it belongs to, but with hat accent, i.e., x variable has x̂ t-assignment. To
simplify orientation in the following paragraphs, we will also hat-accent all
further objects related to t-assignments.

Any t-assignment x̂JbexpK ∈ B̂(S) can be expressed by several ways
according to our momentary assumption about its structure. To increase
readability of following paragraphs, we present the main variants:

• x̂JbexpK - the t-assignment for x variable with bexp expression,

• x̂JxK - the canonical t-assignment for x variable, i.e., its the expression
equals to x variable itself, and

• x̂ - any t-assignment for x variable with an arbitrary bexp ∈ Bexp+ .

T-assignments will be primed or subscribed. The symbols x̂i, x̂j , and ŷ
represent t-assignments for three (possibly different) variables xi, xj , and y.
If we need to distinguish among several t-assignments for one identical vari-
able, we will always write them in their full forms — symbols x̂Jbexp1K and
x̂Jbexp2K stand for two (possibly different) t-assignments for one x variable.

The equality of t-assignments is determined by belonging to the same
variable and their equivalent expressions in the meaning of boolean equiva-
lence.

54

Definition 3.14 Let x̂JbexpxK ∈ B̂ and ŷ
q
bexpy

y
∈ B̂ be two t-assignments.

Binary relation x̂ =̂ ŷ is defined as concurrent satisfaction of two following
conditions: co(x̂) = co(ŷ) and bexpx ≡ bexpy.

If =̂ relation is not satisfied for some t-assignments x̂, ŷ ∈ B̂ then we will
emphasize this fact by the negated symbol x̂ ̂6= ŷ.

Lemma 3.4 Binary relation =̂ on set B̂ is equivalence relation.

Proof: The relation is certainly reflexive and symmetric due to comparing
operands by = so we prove only its transitivity.

Let x̂JbexpxK , ŷ
q
bexpy

y
, ẑJbexpzK ∈ B̂ be three t-assignments, which sat-

isfy x̂ =̂ ŷ and ŷ =̂ ẑ. Applying Definition 3.14 we obtain four equations

co(x̂) = co(ŷ)
bexpx ≡ bexpy

co(ŷ) = co(ẑ)
bexpy ≡ bexpz

from which directly follows that x̂ =̂ ẑ. 2

Since =̂ is an equivalence relation, the decomposition into classes of the
equivalence on B̂ exists (Proposition A.2 on page 138). If x̂JbexpK is a t-
assignment, then whole equivalence class

R̃(x̂JbexpK) df
=
{
x̂JbexpiK ∈ B̂(S) | x̂JbexpiK =̂ x̂JbexpK

}
(3.6)

can be considered as one element written in several different forms but al-
ways with equal value. Because decomposition splits B̂ into disjoint subsets
(see Proposition A.2), each subset is a unique component in terms of some
operations properly defined, what we will provide in all further definitions.

The composition of more t-assignments at once requires the definition of
the transfer sets to specify required replacements.

Definition 3.15 (Transfer Set) A subset X̂ ⊆ B̂(S) is called a transfer
set on S, if X̂ satisfies for all x̂i, x̂j ∈ X that co(x̂i) = co(x̂j) implies i = j.
We denote the set of all transfer sets for S variables by Ŝ(S), i.e., X̂ ∈ Ŝ(S).

In other words, any transfer set contains at most one transfer function
for each variable in S.

55

Example 3.4

Let S = {x, y, z} be a PLC storage then X̂ = {x̂, ŷ} is a transfer set on S,
i.e., X̂ ∈ Ŝ(S), but Y = {x̂Jy ∨ zK , x̂Jy ∧ zK} is never a transfer set, because
Y contains two t-assignments for x, and Ẑ = {x̂, â} is not a transfer sets on
S, Ẑ /∈ Ŝ(S), because co(â) /∈ S.

Manipulation with transfer set requires testing the presence of a transfer
function for given variable x ∈ S.

Definition 3.16 Binary relation ∈̂ on sets S and B̂(S) is defined for all
X̂ ∈ Ŝ(S) and x ∈ S as

∈̂ df
= x ∈̂ X̂ iff ∃ x̂JbexpK ∈ X̂ such that x = co(x̂JbexpK)

x /̂∈ X̂ otherwise.

The composition of transfer sets is based on the concurrent substitution
that was outlined on page 52. We define it here as mapping from variables
in S to terms of Gbexp grammar. 11

Definition 3.17 Let X̂ ∈ Ŝ(S) be a transfer set and bexpdest ∈ Bexp+ be
any expression. Concurrent substitution X̂ ; bexpdest is defined as such
operation whose result is logically equivalent to the expression obtained by
these consecutive steps:

1. For all x̂iJbexpiK ∈ X̂:
while xi ∈ dom(bexpdest) (where xi = co(x̂iJbexpiK)), xi occurrence in
bexpdest is replaced by some not interchangeable reference to xi.

2. For all x̂iJbexpiK ∈ X̂:
while the result of the previous step (modified expression bexpdest) con-
tains a reference to xi =co(x̂iJbexpiK) then xi reference is replaced by
”(bexpi)” i.e., the expression of x̂iJbexpiK enclosed inside parentheses.

The main purpose of the definition above is to exclude cyclic substitu-
tions without detailed reasoning about an algorithm for this operation.

Example 3.5

Given concurrent substitution: {x̂Jx ∧ yK , ŷJ¬x ∧ ¬yK} ; ĉJ(x ∨ y) ∧ xK
Direct application of the first step described in the definition above yields

ĉ
q
(x̂ ∨ ŷ) ∧ x̂

y

11When the substitution is applied to a term, all occurrences of variables which appear
in both the term and the domain of the substitution are replaced by their images under
the substitution mapping [Fit90]

56

where underlining emphasizes that we have replaced variables by some unique
references to the t-assignments that are not be their identifiers. The second
step yields

ĉJ((x ∧ y) ∨ (¬x ∧ ¬y)) ∧ (x ∧ y)K
but another acceptable results are also

ĉJ(x ≡ y) ∧ (x ∧ y)K or ĉJx ∧ yK
because all expressions in three last t-assignments are logically equivalent.

Definition 3.18 (Weak composition) Weak composition Ẑ = X̂ ◦ Ŷ of
two given transfer sets X̂, Ŷ ∈ Ŝ(S) is the transfer set Ẑ ∈ Ŝ(S), |Ẑ| = |X̂|
with t-assignments x̂i

q
bexpz,i

y
∈ Ẑ, i ∈ I, |I| = |X̂|, constructed by the

following algorithm:

x̂i

q
bexpz,i

y
= x̂i

r
Ŷ ; bexpx,i

z
where x̂i

q
bexpx,i

y
∈ X̂ (3.7)

Example 3.6

Let S = {t, u, x, y, z} be a set of variables. The compositional operation of two
transfer sets is given as:

Ẑ = X̂ ◦ Ŷ = {x̂Jx ∨ yK , ŷJx ∧ yK} ◦ {ŷJx ∧ zK}
which leads to the simple substitution of y variables in X̂ by (x ∧ z)

Ẑ = {x̂Jx ∨ (x ∧ z)K , ŷJx ∧ (x ∧ z)K} .
We obtain after simplifying:

Ẑ = {x̂JxK , ŷJx ∧ zK} .

If we have two transfer sets and their composition given as X̂ ◦ Ŷ =
{x̂JbexpxK} ◦ {ŷ

q
bexpy

y
} and variable y ∈ dom(x̂JbexpxK), then the result is

obtained by substituting (bexpy) instead of y variable in bexpx. Otherwise,
if y /∈ dom(x̂JbexpxK) then the result is unchanged X̂, because nothing is
substituted.

Lemma 3.5 Let X̂ ∈ Ŝ(S) be any transfer set on S then it holds that:

X̂ = X̂ ◦ ∅ and ∅ = ∅ ◦ X̂ (3.8)

Proof: The lemma follows directly from Definition 3.18. If one operand is
the empty set then ◦ always returns its left operand. 2

In case of composing X̂ ◦ Ŷ , where |Ŷ | = 1, the operation ◦ corresponds
to a classic substitution, but that will not hold for an associative composition
of transfer sets, which we aim to, because the weak composition shows one
troublesome property.

57

Lemma 3.6 The weak composition ◦ is not associative on Ŝ(S).

Proof: We prove the lemma by the example. Let S = {x, y} be storage
and X̂ = {x̂Jx ∧ yK}, Ŷ = {ŷJxK}, and Ẑ = {x̂J¬xK} three transfer sets on
S then the composition:

(X̂ ◦ Ŷ) ◦ Ẑ = ({ x̂Jx ∧ yK} ◦ { ŷJxK }) ◦ { x̂J¬xK }
= { x̂Jx ∧ xK } ◦ { x̂J¬xK } = { x̂J¬xK } (3.9)

If we first compose the two last sets:

X̂ ◦ (Ŷ ◦ Ẑ) = { x̂Jx ∧ yK} ◦ ({ ŷJxK } ◦ { x̂J¬xK })
= { x̂Jx ∧ yK } ◦ { ŷJ¬xK }
= { x̂Jx ∧ ¬xK } = { x̂J0K } (3.10)

2

The non-associative behavior has appeared in the example due to differ-
ent variables affected by transfer sets: x /̂∈ Ŷ , but x ∈̂ X̂ and x ∈̂ Ẑ, therefore
there was the absorption of x̂J¬xK in Ŷ ◦ Ẑ composition and the result did
not contain x t-assignment — we have lost a part of information.

The restriction of Ŝ(S) to transfer sets for one given variable x ∈ S offers
the simplest solution. This subset, denoted by Ŝ(S/x) ⊂ Ŝ(S), is defined as

Ŝ(S/x)
df
=
{
X̂i ∈ Ŝ(S) | xi /̂∈ X̂i for all xi 6= x, xi ∈ B

}
(3.11)

Now more hopeful proposition holds.

Proposition 3.3 The operation ◦ is associative on Ŝ(S/x) for non-empty
transfer sets.

Proof: We should prove Equation 3.12 for X̂1, X̂2, X̂3 ∈ Ŝ(S/x)

X̂1 ◦
(
X̂2 ◦ X̂3

)
?=
(
X̂1 ◦ X̂2

)
◦ X̂3 (3.12)

First, we prove the necessity of assuming non-empty sets by the following
example. Let X2 be an empty transfer set then Lemma 3.5 yields:

X̂1 ◦
(
∅ ◦ X̂3

)
?=
(
X̂1 ◦ ∅

)
◦ X̂3

X̂1 ◦ ∅ = X̂1 6= X̂1 ◦ X̂3

therefore the proposition must assume non-empty transfer sets.
According to Definition 3.15 any transfer set contains at most one t-

assignment for each variable in S, from which follows that |X̂i| = 1 for any

58

non-empty transfer set ∅ 6= X̂i ∈ Ŝ(S/x). If all X̂i are non-empty Equation
3.12 can write them as:

{ x̂Jbexp1K } ◦ ({ x̂Jbexp2K } ◦ { x̂Jbexp3K })
?= ({ x̂Jbexp1K } ◦ { x̂Jbexp2K }) ◦ { x̂Jbexp3K } (3.13)

We proceed by considering presence of x in domains of x̂Jbexp1K and
x̂Jbexp2K. The both cases of x ∈ dom(x̂Jbexp3K) or x /∈ dom(x̂Jbexp3K) are
irrelevant because nothing is substituted into bexp3.

First suppose x /∈ dom(x̂Jbexp1K). In such case, { x̂Jbexp1K } ◦ X̂i yields
{ x̂Jbexp1K } for any X̂i ∈ Ŝ(S/x). Therefore the both sides of Equation
3.13 evaluate to { x̂Jbexp1K } and associative law holds.

Now consider that x ∈ dom(x̂Jbexp1K) and x /∈ dom(x̂Jbexp2K). The
left hand side of Equation 3.13 yields { x̂Jbexp1K } ◦ { x̂Jbexp2K } because
x̂Jbexp2K does not contain x and so x̂Jbexp3K is not substituted. In this proof
only, let us write X̂12 = { x̂Jbexp1K } ◦ { x̂Jbexp2K }.

In contrast, the right hand side of the equation evaluates X̂12 first but
its domain of does not contain x because all terms with x in bexp1 have been
replaced by bexp2 without x variable since x /∈ dom(x̂Jbexp2K). Therefore
X̂12 ◦ { x̂Jbexp3K } yields X̂12 and associative law is also valid.

Now consider the case x ∈ dom(x̂Jbexp1K) and x ∈ dom(x̂Jbexp2K). De-
composing operator ◦ we get

x̂ Jx̂Jbexp3K ; (x̂Jbexp2K ; bexp1)K
= x̂ J(x̂Jbexp3K ; x̂Jbexp2K) ; bexp1K (3.14)

Proving associativity of ◦ is transformed to verifying the same for ; but
it holds because all substitutions are applied only to x.

Replacing all occurrences of x in bexp1 by bexp2 yields a result with terms
that contain only x variables brought by bexp2. These will be replaced by
bexp3 consecutively. Reversing procedure we obtain the same after first
substituting bexp3 instead of each x in bexp2 and then using the result for
replacing all x in bexp1. 2

Proposition 3.4 Ĝ(S/x) = (Ŝ(S/x)/=̂, =̂ , ◦) is semigroup.

Proof: We have already proved that ◦ operation is associative so we only
show that Ŝ(S/x) is closed under the semigroup operation ◦ with respect
to =̂ equality. This evidently holds since the result of applying ◦ to a
t-assignment of x variable is again a t-assignment of the same variable.

Language Bexp+ is also closed for any ; concurrent substitution be-
cause its grammar (see page 35) generates all logical operation with the aid
of non-terminal symbol Gbexp, which constitutes both any allowable expres-
sion or variable identifier. Therefore substituting some expression instead

59

of a variable identifier yields again an expression belonging to the same lan-
guage. 2

For non-empty elements of Ŝ(S/x), we define Boolean algebra that will
be extended to Ŝ(S) in the next subsection. First, we present boolean
operations.

Definition 3.19 Let { x̂Jbexp1K }, { x̂Jbexp2K } ∈ Ŝ(S/x) be a non-empty
transfer set. We define the following operations:

{ x̂Jbexp1K } � { x̂Jbexp2K }
df
= { x̂Jbexp1 � bexp2K }

¬{ x̂Jbexp1K }
df
= x̂J¬(bexp1)K

where � represents any boolean binary operation used in Gbexp grammar
(see page 35).

Notice enclosing operands in parentheses to solves any ambiguities caused
by different precedences of boolean operations.

Proposition 3.5 Lattice Â(S/x)
df
=
(
Ŝ(S/x)/=̂,∧,∨, {x̂J1K}, {x̂J0K}

)
is

Boolean algebra.

Proof: Members of the algebra are transfer sets with boolean expressions
in t-assignments, for which all boolean laws will certainly hold.

The smallest and largest elements represents transfer sets {x̂J0K} and
{x̂J1K} satisfying bounded below and above laws. The complement is given
by ¬{x̂} operation defined in the definition.

Any transfer set can be certainly written in many forms, for example
{x̂J1K} and {x̂ J1 + 1K} are equal in terms of =̂ operation, but different in
terms of = operation. We have defined equivalence class R̃(x̂JbexpK) on page
55. If we consider all members of similar equivalence class, its ’clumsy’ def-
inition (without using operations introduced latter) is:

R̃(X̂/x)
df
=

{
{x̂JbexpiK} ∈ Ŝ(S/x) | x̂JbexpiK =̂ x̂JbexpK ,

where x̂JbexpK ∈ X̂

}
as one unique element of the algebra, as done in the definition, then the
smallest and largest elements will be unique and each element will have
only one complement as follows from algebra’s axioms. 2

60

3.3.3 Monoid and Boolean Algebra of Transfer Sets

In this part, we will extend previous definitions to transfer sets, which were
introduced on page 55. We will create associative compositions needed for
improvement of our naive algorithm outlined on page 53).

We begin by the extensions of a transfer set that adds canonical t-
assignments for all variables in S, whose t-assignments are missing in the
transfer set (see page 54).

Definition 3.20 Let X̂ ∈ Ŝ(S) be a transfer set on variable set S. The
extension of X̂, denoted by X̂ ↑ S, is the set with cardinality |X̂ ↑ S| = |S|
whose members are x̂i t-assignments defined for all xi ∈ S as

x̂i
df
=

{
x̂i if xi ∈̂ X̂ and thus ∃x̂i ∈ X̂ satisfying co(x̂i) = xi

x̂i JxiK if xi /̂∈ X̂

The set ∅ ↑ S, called canonical transfer set of S contains canonical t-
assignments of all variables in S and it has an exclusive position among all
transfer sets. To emphasize its fundamental importance, let us denoted this
set by ÊS .

Definition 3.21 Let X̂ ∈ Ŝ(S) be a transfer set on variable set S. The
compression of X̂, denoted by X̂ ↓, is defined as

X̂ ↓ df
=

{
x̂iJbexpK ∈ X̂ | x̂iJbexpK ̂6= x̂iJxiK

}
where xi = co(x̂i) .

The compression expresses meaning of ↓ operation that serves for
packing transfer sets but its primary purpose consists mainly in portabil-
ity among different S. Operators ↑ and ↓ allow specifying only such t-
assignments, which express required operations on some subset of variables
S0 ⊂ S that includes performed changes in S. This transfer set S0 can be
extended to any subset Si of variables such that Si ⊃ S0.

Example 3.7

Let

T̂ =
{
x̂JxK ,
ŷJx ∨ yK

}
be a transfer set on S = {x, y, z} then

T̂ ↑ S =


x̂JxK ,
ŷJx ∨ yK ,
ẑJzK

 and T̂ ↓ = {ŷJx ∨ yK}

61

The extension and compression are generally not inverse operations but
they will be if we narrow Ŝ(S) to subsets invariable with respect to these
operations.

Ŝ(S)↓ df
=

{
X̂ ∈ Ŝ(S) | X̂ = X̂ ↓

}
(3.15)

Ŝ(S)↑ S df
=

{
X̂ ∈ Ŝ(S) | X̂ = X̂ ↑ S

}
(3.16)

Lemma 3.7 Operators ↑ and ↓ are bijective mappings between Ŝ(S)↓ and
Ŝ(S)↑ S.

Proof: The lemma directly follows from the definition. Let us consider
transfer set X̂ ∈ Ŝ(S)↓ then X̂ is invariable with respect to ↓ compression
because it does not contain any canonical t-assignment — they all were
removed by the compression.

Its ↑ extension will add only canonical t-assignments so their removing
yields X̂ again, because adding and removing canonical t-assignment do not
change remaining t-assignments. Therefore, each transfer set is also mapped
to unique element and

fn : Ŝ(S)↓ ↔ Ŝ(S)↑ S
2

Furthermore, we extend the equivalence relation of t-assignments intro-
duced in Definition 3.14 for transfer sets.

Definition 3.22 Let X̂, Ŷ ∈ Ŝ(S) be two transfer sets on S then X̂ =̂ Ŷ
if, for all x̂iJbexp1K ∈ (X̂ ↑ S), x̂iJbexp2K ∈ (Ŷ ↑ S) exists such that
x̂iJbexp1K =̂ x̂iJbexp2K .

Every transfer set contains at most one t-assignment for each variable
(Definition 3.15) so two transfer sets X̂, Ŷ ∈ Ŝ(S) will be equal when one of
the following conditions is satisfied for any given variable x ∈ S

1. If x ∈̂ X̂ and x ∈̂ Ŷ then both the t-assignments of x have their
expressions logically equal.

2. If x has a t-assignment only in one of the both sets, then this t-
assignment is =̂ equivalent to canonical t-assignment.

3. x has no t-assignment in the both transfer sets.

Considerations above support following proposition.

Proposition 3.6 Binary relation =̂ on set Ŝ(S) is equivalence.

62

Proof: The relation is certainly reflexive and symmetric because elements
are compared with the aid of = and ≡ relations and they are extended on
S before their comparison so we must prove only transitivity.

Let X̂, Ŷ , Ẑ ∈ Ŝ(S) be three transfer sets. Transitivity law for =̂ is
X̂ =̂ Ŷ and Ŷ =̂ Ẑ imply X̂ =̂ Ẑ. This will hold only if t-assignments
belonging to any selected variable satisfy the same law because only such
t-assignments are mutually compared.

Let b ∈ S be a variable and let us write b̂JbexpXK , b̂JbexpY K , b̂JbexpZK
for b t-assignments in extended transfer sets X̂ ↑ S, Ŷ ↑ S, Ẑ ↑ S. These
t-assignments always exist according to Definition 3.20, so we rewrite the
transitivity law as:

b̂JbexpXK =̂ b̂JbexpY K ∧ b̂JbexpY K =̂ b̂JbexpZK
⇒ b̂JbexpXK =̂ b̂JbexpZK (3.17)

We have already proved that transitivity holds for three arbitrary t-assignment
of one variable in Lemma 3.4 on page 55.

Now we must take in account non existent t-assignment in some trans-
fer set. If it happens, extension operator ↑ supplies canonical t-assignment
instead of missing t-assignment. In such case remaining t-assignments must
be also equivalent to canonical t-assignment, otherwise Statement 3.17 could
not hold. Therefore, transitivity is valid for all cases. 2

Similar consideration as for Definition 3.14 can be also given for transfer
sets. If X̂ ∈ Ŝ(S) is a transfer set then whole equivalence class

R̃(X̂)
df
=
{
X̂i ∈ Ŝ(S) | X̂i =̂ X̂

}
(3.18)

represents one element written in several different forms but always with the
same value in terms of some operations properly defined.

Definition 3.23 Let X̂, Ŷ ∈ Ŝ(S) be two transfer sets on S with extensions
X̂ ′ = X̂ ↑ S and Ŷ ′ = Ŷ ↑ S. We define the following operations:

X̂ � Ŷ
df
=

{
x̂iJbexpX � bexpY K | x̂iJbexpXK ∈ X̂ ′ and x̂iJbexpY K ∈ Ŷ ′

}
↓

¬X̂ df
=

{
x̂iJ¬bexpXK | x̂iJ¬bexpXK ∈ X̂ ′

}
↓

where � represents any boolean binary operation used in Gbexp grammar
(see page 35).

Let us write Θ̂(bexp)S for the transfer set defined as

Θ̂(bexp)S df
= {x̂i JbexpK | for all x ∈ S, x = co(x̂i)} (3.19)

63

where bexp ∈ Bexp+ is an arbitrary expression, which is assigned to all
t-assignments. It allows defining Boolean algebra of transfer sets.

Proposition 3.7 Lattice Â(S)
df
= (Ŝ(S)/=̂, =̂,∧,∨, Θ̂(1)S , Θ̂(0)S) is Bool-

ean algebra.

Proof: The lattice Â(S/x) =
(
Ŝ(S/x)/=̂,∧,∨, {x̂J1K}, {x̂J0K}

)
is Boolean

algebra for Ŝ(S/x), which was proved in Proposition 3.5 on 60, for transfer
sets with t-assignments for one variable x ∈ S. Because boolean operations
with transfer sets are done as the union of operations with t-assignments for
each S variable, the same surely satisfy transfer sets. Whole Ŝ(S) is closed
under algebra operations since all Ŝ(S/x) are closed for all x ∈ S.

The smallest and largest elements represent Θ̂(1)S and Θ̂(0)S satisfying
bounded below and above laws. The complement is given by ¬X̂. These
elements are unique in terms of =̂ which was already discussed in the proof
of Proposition 3.5. 2

Example 3.8

Let

T̂ = {ŷJz ∨ yK} and Û =
{
ŷJ¬zK ,
ẑJx ∧ yK

}
be two transfer set on S = {x, y, z} then:

T̂ ∧ Û =
{
ŷJ(z ∨ y) ∧ ¬zK ,
ẑJz ∧ (x ∧ y)K

}
and ¬T̂ =


x̂J¬xK ,
ŷJ¬(x ∨ y)K ,
ẑJ¬zK


¬T̂ contains t-assignments that are not in T̂ , because T̂ was first extended

by ↑ operator, which has added canonical t-assignments x̂JxK and ẑJzK, and
then T̂ ↑ was negated.

In contrast, notice missing t-assignment for x variable in T̂ ∧ Û , because
it equaled to x̂Jx ∧ xK after ∧ operation and therefore it was removed by ↓
compression as =̂ equivalent of the canonical t-assignment x̂JxK.

The main operator for transfer sets is � composition operator.

Definition 3.24 (Composition) Let X̂, Ŷ ∈ Ŝ(S) be two transfer sets on
S then their � composition is defined as:

X̂ � Ŷ
df
=

{
x̂ ◦ Ŷ | x̂ ∈

(
X̂ ↑ S

)}
↓

64

Example 3.9

Let T̂ , Û ∈ Ŝ(S) be two transfer set on S = {x, y, z} from the previous exam-
ple. Their composition T̂ � Û can be written as

T̂ � Û =
(

({ŷJz ∨ yK}↑ S) �
{
ŷJ¬zK ,
ẑJx ∧ yK

})
↓

Definition 3.20 and inner ↑ yields

T̂ � Û =


x̂JxK ,
ŷJz ∨ yK ,
ẑJzK

 ◦
{
ŷJ¬zK ,
ẑJx ∧ yK

}↓
expanding ◦ weak composition gives:

T̂ � Û =


x̂JxK ,
ŷJ(x ∧ y) ∨ ¬zK ,
ẑJx ∧ yK

↓ =
{
ŷJ(x ∧ y) ∨ ¬zK ,
ẑJx ∧ yK

}

Lemma 3.8 Let X̂, Ŷ ∈ Ŝ(S) be any transfer sets on S then:

X̂ � Ŷ =̂
(
X̂ ↑ S

)
� Ŷ (3.20)

=̂ X̂ �
(
Ŷ ↑ S

)
(3.21)

=̂
(
X̂ ↑ S

)
�
(
Ŷ ↑ S

)
(3.22)

=̂
(
X̂ ↓

)
� Ŷ (3.23)

=̂ X̂ �
(
Ŷ ↓

)
(3.24)

=̂
(
X̂ ↓

)
�
(
Ŷ ↓

)
(3.25)

Proof: Because the extension is always applied to X̂ before the composition
Equation 3.20 follows directly from Definition 3.24.

According to Definition 3.20, ↑ extension only add canonical t-assignments
that will replace corresponding variables by themselves enclosed in paren-
theses when the concurrent substitution is performed (see Definition 3.17
on page 56), i.e., if x ∈ S is any variable in a boolean expression then x
is replaced by (x) when substituting canonical t-assingment x̂JxK. These
modifications do not change logical value of boolean expressions, therefore
the result does not depend of possible Ŷ extension and Equation 3.21 always
holds.

65

Applying Equations 3.20 and 3.21 to X̂ � Ŷ we obtain Equation 3.22.
Equations from 3.23 to 3.25 follows from bijective properties of ↑ and ↓
(Lemma 3.7). 2

Now we present the main theorem of this thesis for which validity we
have created transfer sets.

Proposition 3.8 The composition � is the associative operation on Ŝ(S).

Proof: Utilizing Lemma 3.8 we take in account only transfer sets in Ŝ(S)↑
S. We have proved in Lemma 3.7 that ↑ and ↓ operators perform mutual
bijective mapping therefore outer compression operator does not change
validity of results.

Let X̂, Ŷ , Ẑ ∈ Ŝ(S) ↑ S be three extended transfer sets. In this case �
associativity means

(X̂ � Ŷ) � Ẑ = X̂ � (Ŷ � Ẑ) (3.26)

Equation 3.26 will hold if the following equation

(x̂ ◦ Ŷ) � Ẑ = x̂ ◦ (Ŷ � Ẑ) (3.27)

is satisfied for all x̂ ∈ X̂ (Definition 3.24). We expand ◦ in front of x̂
according Definition 3.18 on page 57

(Ŷ ; x̂) � Ẑ = (Ŷ � Ẑ) ; x̂ (3.28)

Now, we divide the proof into three parts. First, we will consider the flow
of symbols in terms of languages to prove that the result contains only vari-
ables imported from a rightmost transfer set of Equation 3.26, then we will
show that the associativity holds if no optimizations of boolean expressions
are performed, and finally, we will reason about the optimizations.

We rewrite Equation 3.28 in terms of languages. Any t-assignment
x̂i JbexpiK contains an expression bexpi that represents a string from lan-
guage Bexp+, which was generated by Gbexp grammar (defined on page
35).

E alphabet of language Bexp+ consists of the symbols of S variables and
literals, which will be denoted (only in this proof) by Λ. The literals include
all symbols Bexp+ alphabet that are different from variables i.e., all boolean
operations allowed in Gbexp grammar, parentheses, and constants 0 and 1.
Thus Λ = E − S.

In this proof only, we create marking of alphabet’s symbols by super-
scripts. Alphabet Sx will represent S variable symbols with ’x’ marks spec-
ifying that these symbols have their origin in X̂ expressions. Similarly,
alphabets Sy and Sz belong to Ŷ and Ẑ. Sx, Sy and Sz are entirely equal

66

to S in terms of the grammar and manipulation with t-assignments. They
only differ by auxiliary marks.

Using notation above and Definition A.13 we split the expression of
x̂iJbexpx

i K ∈ X̂ string into the concatenation of n substrings

bexpx
i = λi,1.s

x
i,1.λi,2.s

x
i,2λi,ni−1.s

x
i,ni−1.λi,ni (3.29)

where ni > 0 is an integer number, sx
i,j ∈ Sx are variable symbols and

λi ∈ Λ+ for i = 2 . . . (n − 1) are non-empty strings, whereas λi,1, λi,ni ∈ Λ∗

are (possibly empty) strings. This follows directly from grammar’s rules
because all variable names must be separates by strings of Λ+ language and
any expression may begin or end by some string from Λ∗ language.

Definition 3.17 describes the concurrent substitution as replacing each
sx
i,j variable by the value of ŝy

i,j

r
bexpy

k,i

z
where co

(
ŝy
i,j

)
= sx

i,j . Applying
this to Equation 3.29 yields

bexpx�y
i = λi,1.(.bexp

y
k1
.).λi,2.(.bexp

y
k2
.). . . . λi,ni−1.(.bexp

y
kni−1

.).λi,ni

(3.30)
where symbols (,) ∈ Λ specify ordinary parentheses which were only marked
by underlines to distinguish them from mathematical parentheses, and terms
bexpy

kj
represent some values of t-assignments ŷkj

∈ Ŷ corresponding to
original variables sx

i,j . Indexes kj form a list with (possibly) repeated values
because one or more variables could occur more times in bexpx

i .
If we consider properties of bexpx�y we see that

∅ =
{
sx
i ∈ Sx | sx

i ∈ bexpx�y
}

(3.31)

because all sx
i have been replaced. String bexpx�y contains only variables

marked as belonging to Ŷ expressions. This follows directly from Definition
3.15 of transfer sets and ↑ extension operator (Definition 3.20).

Therefore, the result of composing x̂i ◦ Ŷ is a string from the language
defined over alphabet Λ∪Sy. Since � composition is performed by applying
◦ to all t-assignments in X̂ the same holds for X̂ � Ŷ .

We have derived this property for arbitrary X̂, Ŷ ∈ Ŝ(S) ↑ S, which
satisfy the preconditions mentioned above, so the same also holds for the
both sides of Equation 3.26. If we mark the alphabet of variables in the
rightmost composed transfer set as Sr then the result of the composition
will have only expressions from language (Λ∪Sr)+, which equals (Λ∪Sz)+

in case of Equation 3.26.
We denote by v si; w replacing a symbol si in a string w by a string v. If

all variable symbols are always replaced during concurrent substitution and
boolean expressions are not optimized (i.e., a substitution algorithm works
exactly according to Definition 3.17) then the associativity of transfer sets

67

is similar to validity of the following equation:

(.λk1 .s
z
k.λk2 .)

sy
j;
(

(.λj1 .s
y
j .λj2)

sx
i; λi1 .s

x
i .λi2

)
=

(
(.λk1 .s

z
k.λk2 .)

sy
j; (.λj1 .s

y
j .λj2)

)
sx
i; λi1 .s

x
i .λi2 (3.32)

Expanding the equation yields

λi1 .(.λj1 .(.λk1 .s
z
k.λk2 .).λj2).λi2

= λi1 .(.λj1 .(.λk1 .s
z
k.λk2 .).λj2).λi2 (3.33)

Equation 3.32 could form the base case of induction with induction steps
continuing by inserting new strings such that all expression strings will sat-
isfy following conditions:

1. Single symbols of variables are separated by Λ+ strings.

2. Exactly one substitution rule exists for each variable symbol.

This induction is trivial and therefore we allow to skip it.
Up to now, we have shown that associativity will hold if no logical ma-

nipulation with boolean expressions are performed after substitutions i.e.,
the substitution algorithm operates exactly according to Definition 3.17.

Possible modifications of the boolean expressions can absorb or add some
variables but the result must be always logical equivalent to an original
expression. Replacing each variable by an expression inclosed in parentheses
preserves the precedence of all boolean operations and so such substitution
is equivalent to replacing some variable by logical function. In this case.
Boolean algebra assures the validity of its laws i.e.,

tf ≡ g(x1, x2, . . . xn) implies
tf ≡ g(h1(x1, x2, . . . xn), h2(x1, x2, . . . xn), . . . hn(x1, x2, . . . xn))

where g, h1, h2, . . . hn are arbitrary logical functions of Boolean algebra and
tf constant is either 1 or 0.

If an expression in a transfer set has been changed during composition
then the same modification can also be done after replacing its variables
by corresponding logical functions because whole substituted expression is
enclosed in parentheses. The composition can yield different results in terms
of languages but all belonging to the same class of the equivalence as show
in the discussion of Equation 3.6 on page 55 and Equation 3.18 on page 63.

Therefore, Equation 3.26 holds even if some logical equivalent manipu-
lations with transfer set expressions are performed.
2

68

Example 3.10

We return to three transfer sets utilized for proving that weak composition is
not associative on B̂(S) (see Lemma 3.6 on page 58). Now, we test the same
example, but with � composition.

{x̂(x) Jx ∧ yK} � {ŷ(x) JxK } � {x̂(x) J¬xK}

We simplify the evaluation by applying Lemma 3.8 and Definition 3.24:

({x̂(x) Jx ∧ yK}↑ S � {ŷ(x) JxK }↑ S ◦ {x̂(x) J¬xK}↑ S)↓

Expanding the equation according to Definition 3.20 yields({
x̂(x) Jx ∧ yK ,
ŷ(y) JyK

}
�
{
x̂(x) JxK ,
ŷ(x) JxK

}
�
{
x̂(x) J¬xK ,
ŷ(y) JyK

})
↓

We will test associativity first by composing two leftmost terms which yields({
x̂(x) Jx ∧ xK ,
ŷ(x) JxK

}
�
{
x̂(x) J¬xK ,
ŷ(y) JyK

})
↓

=
{
x̂(x) J¬xK ,
ŷ(x) J¬xK

}
↓ =

{
x̂(x) J¬xK ,
ŷ(x) J¬xK

}
= Θ̂(¬x)S

where Θ̂()S was define by Equation 3.19 on page 63. Now we begin with two
rightmost terms which give the equations:({

x̂(x) Jx ∧ yK ,
ŷ(y) JyK

}
�
{
x̂(x) J¬xK ,
ŷ(x) J¬xK

})
↓

=
{
x̂(x) J¬x ∧ ¬xK ,

ŷ(x) J¬xK

}
↓ =

{
x̂(x) J¬xK ,
ŷ(x) J¬xK

}
= Θ̂(¬x)S

The example which has failed to be associative for ◦ weak composition is as-
sociative when evaluated as � composition, since all variables propagate to the
final result.

Proposition 3.9 M̂(S) =
(
Ŝ(S)/=̂, =̂ , � , ÊS

)
is a monoid.

Proof: We have proved that � is an associative operation on Ŝ(S) in the
previous proposition. To prove that Ŝ(S) is closed under �, we utilize that
the semigroup

Ĝ(S/x) = (Ŝ(S/x)/=̂ , ◦)

is closed under ◦ composition as shown in Proposition 3.4 (see page 59).

69

Let X̂, Ŷ ∈ Ŝ(S) be transfer sets then their composition X̂ � Ŷ is
performed as a consecutive ◦ compositions of t-assignments from X̂ and Ŷ ,
which belong to an identical variable (see Definition 3.24 and also Equation
3.27), because the fact that Ĝ(S/x) semigroup is closed under ◦ implies that
Ŝ(S) is also closed under �.

Now, we show that ÊS is an identity element on Ŝ(S).

X̂ � ÊS =̂ ÊS � X̂ (3.34)

We prove the equation only for all X̂ ∈ Ŝ(S)↑ S because the same will hold
for any transfer set according Lemma 3.8. Using definition of ÊS (see page
61) we expand Equation 3.34 to

x̂1 Jbexp1K ,
x̂2 Jbexp2K ,
. . .
x̂n Jbexp2K

�


x̂1 Jx1K ,
x̂2 Jx2K ,
. . .
x̂n JxnK

 =̂


x̂1 Jx1K ,
x̂2 Jx2K ,
. . .
x̂n JxnK

�


x̂1 Jbexp1K ,
x̂2 Jbexp2K ,
. . .
x̂n Jbexp2K


It yields after applying Lemma 3.8 to the leftmost side and Definition 3.24
to rightmost side

x̂1 Jbexp1K ,
x̂2 Jbexp2K ,
. . .
x̂n Jbexp2K

� ∅ =̂


x̂1 Jbexp1K ,
x̂2 Jbexp2K ,
. . .
x̂n Jbexp2K


that certainly holds because empty set means that nothing is substituted.
Therefore the both side are =̂ equal 12 of expressions and ÊS is identity
element on Ŝ(S).
2

Associativity with the existence of identical element allow presenting one
definition and several propositions, which will become useful for creating the
conversion of APLC program in the next section.

Definition 3.25 Let X̂i ∈ Ŝ(S) be n transfer sets on S where n > 0 is an
integer. To shorten notations, let us write sequences of their compositions
with the aid of compositional production defined as the follows:∏̂n

i=1
X̂i

df
= X̂k � X̂k+1 � . . . X̂n∏̂k<

i=n
X̂i

df
= X̂n � X̂n−1 � . . . X̂k

where k > 0 is an integer number such that k < n.
12The concurrent substitution algorithm used in the compositions allows any result

equivalent to Definition 3.17 on page 56, therefore Equation 3.34 only specifies =̂ equality.

70

Using reverse order of indexes in the second compositional production
reflexes composing transfer sets in the direction from right to left.

Proposition 3.10 Let X̂i ∈ Ŝ(S) be n transfer sets on S, where n > 0 is
an integer. Their composition can be evaluated as the composition of two
partial compositions

∏̂1<

i=n
X̂i =̂

(∏̂k+1<

i=n
X̂i

)
�
(∏̂1<

i=k
X̂i

)
(3.35)

for any k integer number such that 1 < k < n.

Proof: The proposition follows directly from associativity of � operation
proven above. 2

Proposition 3.11 Let X̂i, Ŷj ∈ Ŝ(S) be m and n transfer sets on S, where
m > 0 and n > 0 are integers, and given their composition

X̂ =
∏̂1<

i=m
X̂i and Ŷ =

∏̂1<

j=n
Ŷj

and the formula for the evaluating transfer set Ẑ ∈ Ŝ(S) as the following
branching condition:

Ẑ =

{
X̂ if b ≡ 1
Ŷ if b ≡ 0

where b ∈ S is a variable. Then, Ẑ equals to

Ẑ =
(
X̂ ∧ Θ̂(b)S

)
∨
(
Ŷ ∧ Θ̂(¬b)S

)
(3.36)

Proof: Expanding Equation 3.36 according to Definition 3.23 and Equation
3.19 (see page 63) we obtain (notice we defined here the precedence of wedged
operator ∧ higher than ∨ to wedge the equation at the line):

Ẑ =


ŝx
1 Jbexpx

1K
ŝx
2 Jbexpx

2K
. . .

ŝx
n Jbexpx

nK

 ∧


ŝb
1 JbK
ŝb
2 JbK
. . .
ŝb
n JbK

 ∨


ŝy
1 Jbexpy

1K
ŝy
2 Jbexpy

2K
. . .

ŝy
n Jbexpy

nK

 ∧


ŝb
1 J¬bK
ŝb
2 J¬bK
. . .

ŝb
n J¬bK


where n = |S|. This yields

Ẑ =


ŝ1 J((bexpx

1) ∧ b) ∨ ((bexpy
1) ∧ ¬b)K

ŝ2 J((bexpx
2) ∧ b) ∨ ((bexpy

2) ∧ ¬b)K
. . .

ŝn J((bexpx
n) ∧ b) ∨ ((bexpy

n) ∧ ¬b)K


71

from which we see that

X̂ = Ẑ �
{
b̂J1K

}
and Ŷ = Ẑ �

{
b̂J0K

}
(3.37)

2

The last proposition combines the previous conclusions and will be useful
for converting APLC programs.

Proposition 3.12 Let X̂i, Ŷj , Ŵk,∈ Ŝ(S) be transfer sets on S and integer
numbers satisfying 0 < i ≤ m, 0 < j ≤ n, 0 < k ≤ r, and 0 < l ≤ s. Given
their compositions

V̂ =
∏̂1<

k=r
V̂k and Ŵ =

∏̂1<

l=s
Ŵl (3.38)

X̂ = V̂ �
(∏̂1<

i=m
X̂i

)
� Ŵ (3.39)

Ŷ = V̂ �
(∏̂1<

j=n
Ŷj

)
� Ŵ (3.40)

and the formula for evaluating transfer set Ẑ ∈ Ŝ(S) as the following branch-
ing condition:

Ẑ =

{
X̂ if b ≡ 1
Ŷ if b ≡ 0

(3.41)

where b ∈ S is a variable. Then, Ẑ equals

Ẑ = V̂ �
((
X̂ ∧ Θ̂(b)S

)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
� Ŵ (3.42)

Proof: Substituting Equations 3.37 into Equations 3.39 and 3.40 we obtain

X̂ = V̂ �
(((

X̂ ∧ Θ̂(b)S
)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
�
{
b̂J1K

})
� Ŵ

Ŷ = V̂ �
(((

X̂ ∧ Θ̂(b)S
)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
�
{
b̂J0K

})
� Ŵ

Applying the condition presented in Equation 3.41 yields

Ẑ = V̂ �
(((

X̂ ∧ Θ̂(b)S
)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
�
{
b̂JbK

})
� Ŵ

= V̂ �
(((

X̂ ∧ Θ̂(b)S
)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
� ÊS

)
� Ŵ

= V̂ �
((
X̂ ∧ Θ̂(b)S

)
∨
(
Ŷ ∧ Θ̂(¬b)S

))
� Ŵ

which is Equation 3.42. 2

72

3.4 Converting APLC Program

Here we explain APLCTRANS, the an effective algorithm for representing
APLC program operations as one transfer set.

APLCTRANS supposes expressing all instructions of APLC program as
transfer sets whose definition requires a storage S. S incorporates for binary
PLC (see Definition 3.2 on page 32) three sets of variables:

Σ - finite set of inputs,

Ω - finite set of outputs, and

V - internal memory of binary PLC,

to which we must also add the boolean flag register f̂reg and an evaluation
stack Estack utilized by APLC machine. We will suppose a finite length of
Estack specified by an integer constant depth (see Table 3.7). If a chosen
depth appears to be insufficient, its increasing is possible.

Transfer sets will be defined on the union of all mentioned variables:

S = Σ ∪ Ω ∪ V ∪ {f̂reg} ∪ Estack (3.43)

Converting a real PLC program begins by expressing its instructions
in APLC language. This easily managed, since both APLC language and
machine were designed to allow such conversions as effective and readily as
possible.

The outline of some simple PLC instructions with direct conversions is
listed in Table 3.6. More complex program constructions require certainly
special approaches depending on an employed PLC processor, but in general
the most of PLC instructions are convertible by substitutions of some strings.
This is the main goal of APLC machine described in Section 3.2.

The transfer sets of APLC instructions follow directly from joining Ta-
bles 3.3 and 3.1 (see pages 42 and 38). They are listed in Table 3.7.

3.4.1 APLCTRANS - Algorithm

Preparation of data
When APLCTRANS algorithm runs, APLC instructions are replaced by
corresponding transfer sets. We will index them in the physical order of the
instructions in the program. If an instruction was labeled, then its transfer
set is marked by the same label.

The first instruction, from which the program begins, may be labeled,
but not necessarily, because jumps and call are not allowed to address any
label before them due to the constraint specified by ≺ relation (see page 42
and Table 3.3).

73

Allen-Bradley PLC 5 and SLC 500

Rung start and end
SOR → Init;
EOR → Init;

Branch start, next, or end
BST → Push; EPush 1;
BNX → TOr; Dup; Exch;
BND → TOr; Drop;

Examine if closed or opened
XIC b → And b;
XIO b → And ¬b

Output energize, latch, or unlatch
OTE b → Store b;
OTL b → Set b
OTU b → Res b

Siemens S7-200

Rung start and end
Network → Init;

Logic stack push, read, pop, load
LPS → Push;
LRD → Load 1; TAnd;
LPP → Pop;
LDS b → EPush b;

And, And not, Or, Or not, Load, and Load-not
A b → And b;
AN b → And ¬b
O b → Or b;
ON b → Or ¬b
L b → Load b;
LN b → Load ¬b

Assign, set, reset
= b → Store b;
S b1, n → Set b1; Set b2; . . . Set bn;
R b1, n → Res b1; Res b2; . . . Res bn;

Table 3.6: Examples of Converting PLC Codes into APLC

74

Initialization of evaluation

Init ĈInit = { f̂reg J1K } ∪ Θ̂(0)E

Operation with flag register

Load bexp ĈLoad = { f̂reg JbexpK }
And bexp ĈAnd = { f̂reg Jfreg ∧ (bexp)K }
Or bexp ĈOr = { f̂reg Jfreg ∨ (bexp)K }
Not ĈNot = { f̂reg J¬fregK }
TAnd ĈTAnd = { f̂reg Jfreg ∧ e1K }
TOr ĈTOr = { f̂reg Jfreg ∨ e1K }

Assignments
Store b ĈStore = { b̂ JfregK }
Set b ĈSet = { b̂ Jfreg ∨ bK }
Res b ĈRes = { b̂ J¬freg ∧ bK }

Rising and falling edge detection

REdge b ĈREdge = { f̂reg Jfreg ∧ ¬bK , b̂ JfregK }
FEdge b ĈFEdge = { f̂reg J¬freg ∧ bK , b̂ JfregK }

Program control (see text)

Jp label ĈJp = Ĉlabel

Jpc label ĈJpc = Equation 3.42 or 3.36
Js label ĈJs = Ĉnextcode � Ĉlabel

Jsc label ĈJsc = Equation 3.42

End ĈEnd = { f̂reg J1K } ∪ Θ̂(0)E

and the end of current composition

Table continues in Table 3.8

Table 3.7: Transfer Sets of APLC Program — Part I.

75

Table continues from Table 3.7

Manipulation with the evaluation stack

Push ĈPush = { ê1 JfregK } ∪ Êpush

EPush bexp ĈEPush = { ê1 JbexpK } ∪ Êpush

Pop ĈPop = { f̂reg Je1K } ∪ Êpop

Drop ĈDrop = Êpop

Dup ĈDup = { ê2 Je1K } ∪
(
Êpush − ê2

)
FSwp ĈFSwp = { f̂reg Je1K , ê1 JfregK }
ESwp ĈESwp = { ê1 Je2K , ê2 Je1K }

Special transfer sets for the evaluation stack
Estack = {e1, e2, e3, . . . , edepth}
Êpush = {êi+1 JeiK | ei ∈ Estack − {edepth}}
Êpop = {êi Jei+1K | ei ∈ Estack − {edepth}} ∪ {êdepth J0K}

where depth > 1 is an integer and co(êi) = ei

Table 3.8: Transfer Sets of APLC Program — Part II.

If the first instruction is not labeled, then we mark it by some unique
identifier, for example ’Label1’, to obtain a program containing k ≥ 1 in-
structions marked by labels.

We divide the instructions into k block with lengths m1,m2, . . . mk.
Block i begins by label i as shown in Table 3.9 (see page 77) and contains at
least End instruction, so mi ≥ 1 for all i ∈ |I|, |I| = k.

We index the transfer sets of individual instructions as all being listed
in k lists

L1 = Ĉ1,1 :: Ĉ1,2 :: . . . :: Ĉ1,m1

L2 = Ĉ2,1 :: Ĉ2,2 :: . . . :: Ĉ2,m2

. . . (3.44)
Lmk−1

= Ĉk−1,1 :: Ĉk−1,2 :: . . . :: Ĉk−1,mk−1

Lmk
= Ĉmk,1 :: Ĉmk,2 :: . . . :: Ĉmk,mk

where Ĉ1,1 represent the transfer set of the first instruction of the program,
Ĉmk,mk

is the last one (in terms of their physical placement in program’s
source). We obtain at least one list L1.

The conversion of APLC instructions can be surely performed at run-
time, because it is a simple replacement of text strings by corresponding

76

label1 : Ĉ1,1

Ĉ1,2

. . .

Ĉ1,m1

 Ĉ1

label2 : Ĉ2,1

Ĉ2,2

. . .

Ĉ2,m2

 Ĉ2

. . .

labelk−1 : Ĉk−1,1

Ĉk−1,2

. . .

Ĉk−1,mk−1

 Ĉk−1

labelk : Ĉk,1

Ĉk,2

. . .

Ĉk,mk

 Ĉk =
∏̂1<

i=mk
Ĉk,i

Table 3.9: Diagram of APLC Program Composition

transfer sets definitions taken from a short table. The lists presented above
only clarify used indexing in the text below.

Composing the last block
After preparing data, APLCTRANS begins by composing k-th block (the
last one) which does not contain any control instruction due to constraints
mentioned above, so Ĉk equals

Ĉk :=
∏̂1<

i=mk

Ĉk,i (3.45)

The other blocks are composed in the order from k − 1 to 1 in the
following loop.

LOOP: for ilist := k − 1 downto 1 do
The transfer set of ilist block is calculated as

Ĉilist := ComposeTS(ilist , 1);

77

where ComposeTS(ilist , 1) is recursive function whose arguments are de-
scribed in Pascal like syntax below. LOOP is repeated until ilist = 1.

End of LOOP
Transfer set Ĉ1 expresses the operations of whole APLC program.

function ComposeTS(ilist , jset : integer) : TransferSet;

First, the internal variable of ComposeTS is initialized Ĉ := ÊS . It
will store partial results during the computation of transfer set of ilist
block from Ĉilist ,jset to Ĉilist ,milist

in the following for-loop:

LOOPFN: for j := jset to milist do
Inside of LOOPFN program block, we switch according to the
type of current instruction that was converted to transfer set
Ĉilist ,j .

case End: LOOPFN is interrupted and the function returns a
value of Ĉ :=

(
{ f̂reg J1K } ∪ Θ̂(0)E

)
� Ĉ.

case Js: Ĉ is updated to Ĉ := Ĉjs−label � Ĉ where Ĉjs−label

represents a block designated by Js operand. This block has
already been evaluated due to the constraint for jumps and
calls mentioned above. Then, LOOPFN continues.

case Jsc: Let us write f ′reg for momentary value of f̂reg ∈̂ Ĉ
when Jsc was encountered. When Jsc call is not invoked
then ÊS represents its operations. Substituting into Equation
3.42 defines updating Ĉ:

Ĉ :=
((
Ĉjs−label ∧ Θ̂(f ′reg)

S
)
∨
(
ÊS ∧ Θ̂(¬f ′reg)S

))
� Ĉ

After updating Ĉ, LOOPFN continues.
case Jp: LOOPFN is interrupted and the function returns

Ĉ := Ĉjp−label � Ĉ

where Ĉjp−label represents already evaluated block designated
by Jp label. LOOPFN does not continue because Jp is either
followed immediately by ilist + 1 block or by some never
executed instructions.

case Jpc: Let us write f ′reg for momentary value of f̂reg ∈̂ Ĉ.
Then, LOOPFN is interrupted and the function returns the
value of Equation 3.42

Ĉ :=
((
Ĉjp−label ∧ Θ̂(f ′reg)

S
)
∨
(
Ĉjp−next ∧ Θ̂(¬f ′reg)S

))
� Ĉ

78

where Ĉjp−next is the transfer set of next operations i.e., after
this jump instruction, that are given by the recursive call:

Ĉjp−next := ComposeTS(ilist , j + 1)

Else: Ĉ is updated to Ĉ := Ĉilist ,jset � Ĉ and then LOOPFN
continues.

End of LOOPFN If the loop has not been terminated prematurely
and reached this point, then block ilist has no End instruction
and continues to block ilist + 1. Therefore, the function returns
a value of the composition Ĉ := Ĉilist+1 � Ĉ.

Remark to algorithm: The APLCTRANS algorithm described above
composes the instructions in two directions. It takes program blocks in
backward order, but it proceeds the instructions of momentary block in
forward direction.

The composition can be performed only in the backward direction, from
a bottom instruction to a top one, because � composition is associative. In
this case, the recursive call will not be required.

But we have intentionally described the algorithm in the form, in which
it was really tested. The strict backward direction appeared too unclear for
debugging. To simplify experiments, APLCTRANS reverses only in blocks
and moves forward when composing instructions of one block.

Example 3.11

Figure 3.2 displays the program written under developing environment RSLogix 5
for PLC-5 family of PLCs produced by Rockwell Automation.

The middle part of the figure gives the listing of PLC processor codes.
RSLogix 5 allows editing these instructions in the graphical form of the ladder
diagram depicted at the top of the figure. The corresponding transfer sets and
APLC instructions are listed at the bottom. We will suppose that Σ = {x, y},
Ω = {z}, and V = {m}. This definition is also necessary input information.

The example is analogous to Pascal program: 13

var x, y, z, m: boolean;
begin if not x then m:=y;

y:=z;
end;

13The presented example is very bad PLC program that was created intentionally only
for demonstrating Jpc composition — the most complex case. The example could be
programmed by much better ways, but such programs have appeared too unreadable for
manual composition.

79

Listing created by PLC development environment RSLogix 5

PROJECT "EXAMPLE"
LADDER 2
% Rung: 0 %
SOR XIC I:001/1 JMP 2 EOR
% Rung: 1 %
SOR XIC I:001/2 OTE O:001/1 EOR
% Rung: 2 %
SOR LBL 2 XIC I:001/2 OTE O:001/2 EOR

ADDRESS..SYMBOL
O:001/2 Z
O:001/1 M
I:001/2 Y
I:001/1 X

PLC APLC Transfer set
SOR Init Ĉ1,1 = { f̂reg J1K } ∪ Θ̂(0)E

XIC X And x Ĉ1,2 = { f̂reg Jfreg ∧ xK }
JMP 2 Jpc block2 Ĉ1,3 = Equation 3.42
EOR Init Ĉ1,4 = { f̂reg J1K } ∪ Θ̂(0)E

SOR Init Ĉ1,5 = { f̂reg J1K } ∪ Θ̂(0)E

XIC Y And y Ĉ1,6 = { f̂reg Jfreg ∧ yK }
OTE M Store m Ĉ1,7 = { m̂ JfregK }
EOR Init Ĉ1,8 = { f̂reg J1K } ∪ Θ̂(0)E

SOR Init Ĉ1,9 = { f̂reg J1K } ∪ Θ̂(0)E

LBL 2 block2 :
XIC Y And y Ĉ2,1 = { f̂reg Jfreg ∧ yK }
OTE Z Store z Ĉ2,2 = { ẑ JfregK }
EOR Init Ĉ2,3 = { f̂reg J1K } ∪ Θ̂(0)E

end of file End Ĉ2,4 = { f̂reg J1K } ∪ Θ̂(0)E

Figure 3.2: Example of Composing PLC Program

80

The program does not utilize evaluation stack, thus its storage is according
to Equation 3.43 (see page 73) S = Σ ∪ V ∪ Ω = {x, y, z,m, freg}.

Omitting unused manipulation with the evaluation stack gives the compo-
sition of the last block as the following:

Ĉ2 = Ĉ2,3 � Ĉ2,3 � Ĉ2,2 � Ĉ2,1

= { f̂reg J1K }� { f̂reg J1K }� { ẑ JfregK }� { f̂reg Jfreg ∧ yK }
= { f̂reg J1K , ẑ Jfreg ∧ yK }

After the last block, the previous one is computed by invoking ComposeTS(1, 1),
which composes two instructions of bock 1:

Ĉ1a = Ĉ1,2 � Ĉ1,1

= { f̂reg Jfreg ∧ xK }� { f̂reg J1K }
= { f̂reg JxK }

but the third instruction is Jsc branching operation. To compose it, Com-
poseTS must first evaluate the transfer sets of codes after Jsc as ComposeTS(1, 4).

The recursive call evaluates:

Ĉ1b =
∏̂4<

i=9
Ĉ1,i

= { f̂reg J1K }� { f̂reg J1K }� { m̂ JfregK } (3.46)

�{ f̂reg Jfreg ∧ yK }� { f̂reg J1K }� { f̂reg J1K }
= { f̂reg J1K , m̂ JyK }

Because LOOPFN was not interrupted by End, block 1 continues to block 2
and we must compose them together:

Ĉnext = Ĉ2 � Ĉ1b

= { f̂reg J1K , ẑ Jfreg ∧ yK }� { f̂reg J1K , m̂ Jfreg ∧ yK }
= { f̂reg J1K , ẑ JyK , m̂ JyK }

The recursive call returns this value.
After obtaining this result, main ComposeTS evaluates Jsc as:

Ĉ1 = Ĉjpc � Ĉ1a =
((
Ĉ2 ∧ Θ̂(x)S

)
∨
(
Ĉnext ∧ Θ̂(¬x)S

))
� Ĉ1a

where x is the value of f̂reg ∈̂ Ĉ1a i.e., the momentary value of the flag register

when Jpc was encountered. The substitution of Ĉnext and Ĉ2 yields

Ĉjpc =
({

f̂reg J1K ,
ẑ Jfreg ∧ yK

}
∧ Θ̂(x)S

)
∨

 f̂reg J1K ,
ẑ JyK ,
m̂ JyK

 ∧ Θ̂(¬x)S


81

=


f̂reg JxK ,
x̂ JxK ,

ŷ Jy ∧ xK ,
ẑ Jfreg ∧ y ∧ xK ,
m̂ Jm ∧ xK

 ∨


f̂reg J¬xK ,
x̂ J0K ,

ŷ Jy ∧ ¬xK ,
ẑ Jy ∧ ¬xK ,
m̂ Jy ∧ ¬xK


=

 f̂reg J1K ,
ẑ Jy ∧ (freg ∨ ¬x)K ,

m̂ J(m ∧ x) ∨ (y ∧ ¬x)K


Now ComposeTS terminates (case Jpc) returning the composition of Ĉjpc

with Ĉ1a i.e., with the operations before Jpc.

Ĉ1 = Ĉjp � Ĉ1a

=
{
f̂reg J1K , ẑ Jy ∧ (freg ∨ ¬x)K , m̂ J(m ∧ x) ∨ (y ∧ ¬x)K

}
� { f̂reg JxK }

=
{
f̂reg J1K , ẑ JyK , m̂ J(m ∧ x) ∨ (y ∧ ¬x)K

}
After ComposeTS(1, 1) has returned, LOOP should continue, but this

step down for-loop has reached final index 1, so APLCTRANS terminates and
transfer set Ĉ1 contains t-assignments describing the operations of whole APLC
program.

APLCTRANS algorithm implementation, surveyed on page 89, gives this
result written in the notation suitable for text files:

Composed in 0.18 seconds.
Result={ @f[(1.(1.x))+(1.!(1.x))],

m[(m.(1.x))+(((1.y)).!(1.x))],
z[((((1.x).y)).(1.x))+(((1.y)).!(1.x))] }

Minimized in 0.00 seconds.
MinResult={ @f[1], m[x.m+!x.y], z[y] }

Symbol ’@f’ stands for freg . The prefix ’@’ is reserved code for APLC machine
internal variables to distinguish them from all names used in programs.

3.4.2 Discussion

In this subsection, we consider properties of APLCTRANS, namely its ter-
mination and complexity issues.

Termination

APLCTRANS algorithm contains two for-loops that will certainly terminate
after reaching final indexes. The recursive calls of ComposeTS are invoked
only in the case of composing Jpc instructions. If Jpc has Ĉilist ,j transfer set

82

then we invoke ComposeTS(ilist , j + 1), which proceeds the tail of current
block ilist

Ĉilist ,j+1 :: Ĉilist ,j+2 :: . . . :: Ĉilist ,milist

The main ComposeTS, which has invoked the recursive call, terminates
immediately after obtaining its result. Therefore, each Ĉilist ,j is evaluated
only one times regardless of a number of recursive calls. After rewriting
the composition of Jpc with the aid of some stack for internal variables of
ComposeTS, the recursion could be removed completely, but the algorithm
will be less readable.

So APLCTRANS always terminates after providing βn compositions of
transfer sets where n stands for the number of instructions and β is a finite
constant that expresses unknown number of calls and jumps in the program.
They add at most 3 additional compositional operations, so β ≤ 3 for all
APLC programs.

Memory requirements

APLCTRANS needs to store only the transfer sets of evaluated blocks and
requires few temporary variables. Critical elements are only transfer sets,
which could be very huge structures under certain conditions discussed in
the next part.

Moreover, Example 3.11 has shown that the compositions create boolean
formulas with easily minimizable combinations, such as this expression 1∧x,
x∧(¬x∧y). Reducing these formulas will have certainly significant influence
on the growth of stored data.

Therefore, we consider for each of the suggested implementations of the
transfer sets not only requirements for memory, but also appropriateness for
a run-time minimization of boolean expressions.

The first implementation stores the t-assignments as numeric arrays.
Each variable symbol is coded as a unique number with the size of byte
or 16 bit integer according to requisite number of variables. 14 Reserved
numeric codes are also assigned to all boolean operations and parentheses.

We have derived in the proof of Proposition 3.8 that � composition
replaces all variables by the strings of a rightmost operand. If we employ
this principle then the composition of our integer arrays means replacing
each variable code by the content of the array, to which the code points,
and enclosing the inserted part in parentheses (i.e., the codes assigned to
them) as outlined in Figure 3.3. The boolean operations with transfer sets
can be also implemented by proper joining contents of the arrays.

14APLCTRANS will probably never deal with the number of variables that would over-
flow 16 bit integer. PLC programs have usually hundreds (or at most thousands) of
variables. Moreover, any program with more than 216 variables will be probably too
complex and far beyond limits of todays formal methods.

83

Figure 3.3: Implementation of � as Arrays

The anticipated advantages of the arrays are simple implementation and
stream operations. Each array is read or written only in the direction from
its first element to the end, which allows storing its whole content to a
disc file. If advance operating systems services are employed for files that
are momentary only read (as transfer sets of already calculated blocks) 15

then APLCTRANS becomes limited technically only by available space on
computer disc, or disk arrays, respectively. Transfer sets that store the
result of a momentary performed composition can be only kept in memory
to simplify minimizations.

The arrays have many drawbacks. Each composition accesses nearly all
stored data and could gradually increase their sizes. Employing throughout
minimization is necessary and its algorithm becomes the main component
responsible for APLCTRANS computational complexity.

Binary decision diagrams (BDD) allow better minimizations. This prob-
lem si intensely studied in the literature, for example [HD93, OCVSV98].
The tutorial introduction to BDD was published by Andersen in [And97].
Software packages are also available — their overview is in [YBO+98].

But significant disadvantage of such approach is missing possibility of
direct BDD compositions. Binary decision diagrams contain the references
to variables in every node and concurrent substitutions require replacing
variables by new expressions.

It is doubtful whether could be ever constructed an algorithm capable of
providing efficient concurrent substitutions directly with BDD. Thus, BDDs
must be always converted to expressions and new BDD is built from the
results of their compositions, as shown in Figure 3.4.

Moreover, the worst cases of BDD sizes are exponential. The exact equa-
tions for various BDD types are presented in Gröpl’s thesis [Grö99]. Even if
we suppose that BDDs will have no exponential size, then the construction
of BDD has high complexity.

15For example, 32-bit Windows offer mapping files into system address space without
previous committing any allocation of memory. The files become integrated part of system
swap file, which speeds up access to them [Šus99, And94]

84

Figure 3.4: Implementation of Transfer Sets by BDDs

Proposition 3.13 A BDD of a function f : Bv → B represented by n min-
terms can be constructed in O(n2v2 log n) operations.

Proof: The proof is performed by BDD construction and it is presented in
[OCVSV98, page 3] 2

Therefore, BDD are not suitable for run-time implementation of transfer
sets, but they may be used for the representation of final results.

The best structure for transfer sets are probably Binary expression di-
agrams (BEDs). In contrast to formulas, BEDs allow sharing terms and
the same logical subexpressions are not repeated, which reduce memory re-
quirements, as shown in Figure 3.5. BEDs was described by Andersen and
Hulgaard in several publications [AH97, HWA97, HWA99].

If boolean subexpressions are shared among all t-assignments of one
transfer set, then the compositions mean replacing all variable references in
leftmost � operand by links to rightmost operand.

The major advantage of BEDs is their tree structure that allow providing
simple minimizations, as shown in the bottom of Figure 3.5. Moreover,
BEDs have indeed good complexity properties, which we will discuss below.

Complexity

Firstly, it must be conceded that APLCTRANS complexity can be answer
only by practical experience with PLC programs. Theoretical solutions are

85

Figure 3.5: Implementation of � by BEDs

86

in many ways unsatisfactory because many logical functions have exponen-
tial complexity and we easily create a contradiction.

Overview of main results in the complexity of logic function was pub-
lished by Boppana and Sipser, who also discussed well-known Muller’s the-
orem [BS90, page 9].

Proposition 3.14 (Muller) Almost every boolean function of n variables
requires circuits of size O(2n/n).

Muller’s theorem shows the existence of boolean functions with exponen-
tial circuit complexity. Because formulas are special types of circuits whose
gates have outputs connected only to one gate, this conclusion is also valid
for boolean expressions.

On one hand, special types of boolean functions exist, for which had
been proved polynomial complexity, 16 but the most of 22n

possible boolean
of n variables will have an exponential complexity.

Therefore, the fundamental question is about whether a boolean function
with exponential complexity really appears in transfer sets during APLC-
TRANS conversion of a PLC program.

The transfer sets are the main factor that determines APLCTRANS
complexity. The number of the operations with transfer sets needed for
composing a program depends on the number of instructions linearly, which
could suggest O(n) complexity The worst case APLC program (in terms of
APLC steps) presented in Table 3.4 (see page 48) requires only n simple
compositions(

{ f̂reg J1K } ∪ Θ̂(0)E
)

=
∏̂1<

i=n

(
{ f̂reg J1K } ∪ Θ̂(0)E

)
even if the program scan takes 2n − 1 instruction steps.

More complex situation appears for the second worst case in Table 3.5.
Let us write Ĉk for the transfer set of k block, where k is number of blocks,
each containing m instructions, so the program length is n = k ∗m instruc-
tions. Then, the transfer set of whole program equals to

Ĉ1 =
∏̂1<

i=m

(
. . .
∏̂1<

i=m

(∏̂1<

i=m
Ĉk

)
. . .

)
︸ ︷︷ ︸

k−1 ×
∏

(3.47)

=
∏̂mk−1

i=1
Ĉk (3.48)

Though APLCTRANS will calculate Ĉ1 after β(k−1)m = β(n−m) com-
positions of Ĉk employing Equation (3.47) where β was introduced on page

16For example, lower bound size O(n2.38) was proved for monotone formulas for multi-
plication of Boolean matrices. (Monotone formula use only ∨ and ∧ operations.) [BS90].

87

83, the amount of memory allocated for transfer sets could extremely grow
together with the time for manipulations with them, which could increase
the computational complexity of the whole algorithm.

We will narrow considerations only to BED, which are the most effec-
tive structures. Unfortunately, Andersen and Hulgaard did not make exact
propositions about worst case BEDs size, with the exception of misguiding
notice: ”BEDs can represent any Boolean circuit in linear space” [AH97,
page 1]. More precise formulation contains Williams’s thesis [Wil00, Obser-
vation 20 on page 14]:

BED size is linear in the size of the formula. BDD size is expo-
nential.

This is correct because BEDs represent software variants of circuits and
they are more close to them than boolean formulas. If we reverse the direc-
tions of the arrows in a BED graph we see that BED recommends logical
circuits and differs from them only in two main properties:

• BEDs are acyclic graphs, but general logical circuits can contain loops,
and

• BEDs allow nodes with two sub elements, but circuits usually have
gates with more inputs.

Therefore, the most of circuit properties also hold for BEDs. Many log-
ical functions exist whose representation will cause BED data explosion.
But Williams’s observation bypasses this complexity problem by the impli-
cation: If we had represented some logical function by a finite circuit then
this function could not belong among the family of functions with exponential
sizes.

Using this observation, which Williams has supported by practical ex-
periments, we present a similar hypothesis for all PLCs, whose program can
be expressed as ladder diagram or function block diagram (see page 22), be-
cause the both graphical programming languages are very close to circuits.
Because APLC language allows entering complex expressions, we will relate
the size of a transfer set to the size of APLC source code, not to the number
of instructions.

Hypothesis 3.1 Almost every PLC program, which is expressible either in
ladder diagram or function block diagram and convertible to APLC program,
can be represented as one transfer set whose size is linear in the size of APLC
source code.

Critique: Even if the most of PLC program could have such representa-
tions under favorable conditions, no assumption ensures that this optimal
state will be really achieved. Thus we should rather expect a polynomial
growth of transfer set sizes at the best case. ?

88

This hypothesis together with its critique is also supported by our prac-
tical experiments. The conditions for its validity or the exact equations of
polynomial data growth are a matter for further study.

Experimental Results

To analyze the behavior of APLCTRANS, we have written its test version,
whose main purpose was to reveal critical problems and gave concepts for
improvements. This goal was achieved and a new version of APLCTRANS
is now in development.

The test version of APLCTRANS was implemented with the aid of byte
arrays. We did not use BED, because there is only one available package for
them 17 and its extension to the composition of transfer sets has appeared
too complex. The package should be probably partially rewritten.

Byte arrays are capable to distinguish at most 238 programs variables.
The remaining codes (up to 256) are reserved for a termination code, boolean
operations, freg , and the evaluation stack variables. The boolean operations
≡ and 6≡ were not implemented yet. Practical tests show that the number of
variables was underestimated and many PLC programs need more variables
to express their temporary operations. But 16 bit coding of variables should
satisfy all requirements.

APLCTRANS was designed as a multi pass compiler. If some of the
passed described below is not needed then it is skipped. Therefore, the
input can be either APLC instructions or import a source code of PLC.

The first pass processes PLC program, which is converted to APLC
language. PLC variable names are replaced by symbols according to sup-
plied PLC symbolic database file, which constitutes necessary input data for
APLCTRANS operation together with PLC source code listing (see example
in Figure 3.2 on page 80).

The second pass creates the list of all used variables and labels and
divides APLC program into blocks, which are arranged in such order that
jumps and calls do not invoke backward addresses. If such ordering is not
possible, APLCTRANS terminates with announcing backward call error.

The instructions in the blocks are optimizes during third pass by recog-
nizing frequent sequences of APLC instructions and joining them together.
For example, ”And b1; And b2;” is replaced by one equivalent instruction
And b1 ∧ b2. We have expected that this optimization will accelerate the
compositions, but it has yielded only negligible effect.

The forth pass evaluates the compositions. They are usually calculated
unexpectedly fast as shown in Figures 3.6 and 3.7. The figure depicts compo-
sitional time and the sizes of transfer sets that were obtained by composing

17BED package was written by P. Williams, H. Hulgaard, and H. Andersen and it is
available at URL http://www.it-c.dk/research/bed/

89

a fragment of PLC program, that controls a big round coal store in Taiwan
harbor.

To obtain the number of variables suitable for our test version of APLC-
TRANS, we could process only the part, which deals with system diagnostic,
error detection, sequential control of drives, coal scrapper and conveyer. Be-
cause PLC program was known, the author of this thesis cooperates on its
writing, we could make this extraction to preserve the fragment functional.
It contained 6004 codes of PLC 5 processor that were compiled into 8479
APLC instructions divided in 86 compositional blocks.

In contrast to the hypothesis presented above, we will relate all measured
data to the number of APLC instructions, because PLC 5 processor codes
were all convertible into APLC instructions, which have at most a single
variable in their expressions. Therefore, the number of instruction depends
linear on the size of APLC program.

The upper diagram shows the relationship between the count of pro-
cessed APLC instructions and composition time, when no minimizations
are applied and APLCTRANS performs only raw compositions of transfer
sets. The lower diagram depicts the characteristics of the same program, but
composed with a minimization option switched to providing the reductions
of transfer sets after each composition.

The left side of the diagram shows the composition of the last block,
which contained sequential controls. The size curve has middle part nearly
linear due to composing many relatively simple diagnostic and error detec-
tions subroutines. They were called from introductory part of the program
and their composition caused the fast growth of the size around 8000th in-
struction. 18 Perpendicular drop at the end expresses releasing the transfer
sets of all blocks when APLCTRANS has finished.

The final sizes of transfer sets (13.7 kB or 132.3 kB) correspond to coded
expressions, in which each variable is stored as one byte. Replacing all codes
by variable names enlarged minimized formula to 235 expressions with total
size 109 kB. 19 This is probably more that abilities of any checker tool and
so presented results have meaning only as a case study of APLCTRANS
behavior.

Surprisingly, APLCTRANS shows unexpected speed of the compositions
and nearly linear time for non minimized operation. 20 Thorough checks

18Notice, that the numbers of instructions in the figure do not strictly represent their
order in the program because LOOPFN of ComposeTS() function reads each block
in forward direction, but main part of APLCTRANS composes the blocks in backward
direction. The first instruction of the first compositional block is near the right side of
the diagram but not at its end (precisely, the first instruction was numbered as 8459 in
the diagram).

19109 kB is the third of LATEX2ε text this thesis approximately. Non minimized com-
position had 313 kB after decoding. It was expanded in lesser ratio than the minimized
formula because it contained many parentheses.

20The tests were performed on 400 MHz PC with 256 MB of RAM.

90

Figure 3.6: Example of APLCTRANS Operation without Minimization

Figure 3.7: Example APLCTRANS Operation with Minimization

91

Figure 3.8: Dependency of Composition Time on the Size of Transfer Sets

have revealed that the compositions loops are delayed mainly by run-time
translation of pre compiled APLC coded into transfer sets and the manipu-
lations with small amounts of data are minor factors.

To verify this fact, simple APLC program containing repeated opera-
tions x = x ∧ y; y = y ∧ x; was tested. When APLCTRANS minimization
option is off, the size of all transfer sets increased by a fourth after each com-
position approximately. The measurement of individual composition times
has yielded the diagram in Figure 3.8, which supports the assumption that
the compositions are slowed down more only in the case of megabyte sizes
of transfer sets.

When the minimization was switched off, APLCTRANS processed 65
instructions before ’out of memory’ exception has occurred. If the minimiza-
tion was allowed after each composition, 65 instructions took 40 miliseconds
and the maximum size of all transfer sets did not exceed 21 bytes. This
result could suggest that minimizations will give better results even if it
is sometimes calculated in longer time. But this conclusion is invalid in
general.

One of PLC programs that were available for tests violates this assump-
tion as shown in Table 3.10 and Figure 3.10 (see pages 95 and 96). They
summarize the results of the test performed with 19 fragments extracted
from PLC programs, that were borrowed for this research by courtesy of

92

firms SPEL, Blumenbecker Prague, and SIDAT.
All programs control industrial technologies and they were written by

different programmers. Unfortunately, we could process only programs for
PLC 5, because the import modules for another PLCs have not been fin-
ished yet, and we could compose only fragments, since every PLC program
contains some unconvertible parts.

Thus the sample is not so weighty as we would wish, and no statistically
significant relation can be deduced. But the results indicate that some weak
relation usually exists between the number of APLC instructions, composing
time and the size of final transfer set.

The program were ordered according to total number of APLC instruc-
tion. The table presents the size of the final transfer set with coded ex-
pressions and time required for the composition when minimize option is
switched off to demonstrate pure APLCTRANS operations.

The exception are only lines emphasized by bold font. They represent
one program that was composed with minimized option on (10a) and off
(10b) and it has produced contradict.

To explain it, we created worst case example as xor-network defined by
the equations:

x = (x0 ∧ x1) ∨ (¬x0 ∧ ¬x1)
xr = (xr.0 ∧ xr.1) ∨ (¬xr.0 ∧ ¬xr.1) for i < n

where r ∈ {0, 1}∗ and r.0 or r.1 is concatenation operation (see page 139)
and n represents the depth of xor network.

Because APLCTRANS compiler assigns ∧ higher priority than ∨ au-
tomatically, the corresponding APLC program (if we emphasize r by sub-
scripting for better readability) is

Init;
Load x00000 . x00001 + !x00000 . !x00001;Store x0000;

. . . ⇑ . . . it continues up to 5 XOR levels;

Load x000 . x001 + !x000 . !x001; Store x00;
Load x010 . x011 + !x010 . !x011; Store x01;
Load x100 . x101 + !x100 . !x101; Store x10;
Load x110 . x111 + !x110 . !x111; Store x11;

Load x00 . x01 + !x00 . !x01; Store x0;
Load x10 . x11 + !x10 . !x11; Store x1;

Load x0 . x1 + !x0 . !x1;

Store x;

End;

93

Figure 3.9: Composition of XOR Network

The diagram of APLCTRANS behavior is presented in Figure 3.9. When
the minimization was switched on, APLCTRANS was aborted after 41 min-
utes after processing only 58 instructions. Xor network above is non min-
imizable. Simple minimization algorithm based on boolean laws did not
recognize this fact and tried expand formulas to 22(n−1)

and-minterms. In
the contrast, APLCTRANS without minimization has finished after 201 ms.
Notice that xor-network would yield a transfer set whose size will be linear
in the size of the program source code, in both cases, if transfer set would
have been implemented as BEDs.

If we combine xor-network with the program used for creating Figure
3.8 we obtain the program, which will show exponential behavior with mini-
mization option either on or off as the result 10a and 10b in Table 3.10. But
this is mainly caused by low quality of our simple minimization algorithm.

Using some heuristics combined with a better minimization tool, for
example by SIS [SSL+92] or by BOOM [FH01a, FH01b, FH01c, FH01d],
could probably solve this problem and APLCTRANS would show lower
computational complexity in more cases. Further research is required on
proper methods for minimizing transfer sets.

By tests, we have shown that APLCTRANS performs surprisingly well.
Although, there are always possibilities of APLCTRANS exponential behav-

94

Number of Size of final ComposingProgram
APLC instr. transfer set [kB] time [s]

1 438 1.7 2.2
2 565 2.6 2.9
3 914 8.9 4.9
4 1056 3.7 5.8
5 1077 4.9 6.3
6 1166 6 6.3
7 1575 6.7 8.9
8 1662 6.7 9.4
9 1670 156.5 11.8

min. 10a 29300 954
no min. 10b

1990
77436 1736

11 2312 16.7 14
12 2376 11.5 14.3
13 2825 14.5 16
14 3199 22 19.4
15 3572 24.3 22
16 3581 11.6 20.8
17 4296 13.6 24.5
18 4429 10.6 25.6
19 8479 132.3 51

Table 3.10: Tested APLC Programs (see also Figure 3.10)

ior either in time or in space, we believe that the algorithm will operate with
polynomial complexity of some lower order for almost every PLC program.
Further experiments will certainly show how this assumption is correct.

95

Figure 3.10: Tested APLC Programs

96

Chapter 4

Abstract PLC Applications

This chapter presents the outline of several verification methods of PLCs
based on APLCTRANS. To demonstrate its wide usage, we also overview
its easy modifications for expressing PLCs as a timed or mode automaton.

4.1 Automaton Generated by APLC Program

To improve automaton generated by binary PLC, Definition 3.3 (on page
33), we begin by putting together previous conclusions. Considering proper-
ties of transfer sets generated by APLCTRANS we will attempt to achieve
a better assumption for the number of automaton states than theoretical
value 2|Ω|+|V | i.e., all possible contents of PLC internal memory S specified
by Equation 3.43 (see page 73).

First, we define the intersection of a transfer set with a subset of S
storage:

Definition 4.1 Let X̂ ∈ Ŝ(S) be any transfer set on S variables and U any
subset of S, then we define:

X̂ ∩̂ U df
=

{
x̂ ∈ X̂ | co(x̂) ∈ U

}
and we extend Definition 3.13 on page 54 to transfer sets:

Definition 4.2 Let X̂ ∈ Ŝ(S) be any transfer set defined on storage S then

co(X̂) =
{
x ∈ S | x ∈̂ X̂

}
=

|X̂|⋃
i=1

co(x̂i) where x̂i ∈ X̂

dom(X̂) =
|X̂|⋃
i=1

dom(x̂i) where x̂i ∈ X̂

(4.1)

The sets co(X̂) and dom(X̂) are called a codomain and a domain of X̂.

97

In other words, the domain (or the codomain) of a transfer set is the
union of domains (or codomains) of all its t-assignments. Now, we must
narrow their definition to variables that are important for BPLC .

Definition 4.3 Let X̂ ∈ Ŝ(S) be any transfer set defined on BPLC storage
S, which has as its subset (Ω ∪ V) ⊆ S then we define

ĉoP (X̂) =
{
x̂ ∈

(
(X̂ ∩̂ (Ω ∪ V))↓

) ∣∣∣ x̂ ̂6= x̂ J0 K ∧ x̂ ̂6= x̂ J1 K
}

coP (X̂) = co
(

ĉoP (X̂)
)

=
{
x ∈ S | x ∈̂ ĉoP (X̂)

}
d̂omP (X̂) =

{
x̂ ∈ (X̂ ↑ S) | co(x̂) ∈ dom(X̂)

}
The transfer set d̂omP (X̂) is called a PLC domain of X̂, and the transfer
set ĉoP (X̂) and the set coP (X̂) are called PLC codomains of X̂.

PLC codomain of X̂, i.e. ĉoP (X̂), contains only t-assignments, whose
values depend on another variables i.e, all constants and canonical t-assign-
ments are excluded. Its corresponding codomain set coP (X̂) consists of
variables whose t-assignments are in ĉoP (X̂).

In contrast, PLC domain of X̂, i.e. d̂omP (X̂), contains only t-assign-
ments for variables, on which depends coP (X̂). These t-assignments are
taken from X̂ ↑ S, which means: if a variable has no t-assignments in X̂, i.e.
xi /̂∈ X̂, then its canonical t-assignment is substituted.

Notice that ĉoP (X̂) definition is based only on Ω∪ V variables, because
we must exclude all elements corresponding to inputs Σ — they are stored
in PLC memory and therefore it is possible to change their value by Store
instruction.

However, such assignments seem to be meaningless, they are sometimes
used for changing input or output addresses. These operations are PLC
specialties are require informal explanation.

Suppose occurring a malfunction of input r1 and output w1 on some I/O
module, e.g. due to an overvoltage. The module operates correctly, with
the exception of damaged r1 input and w1 output. Instead of expensive
replacing the whole module, input r1 and output w1 can be reconnected to
some free ports on this one or another I/O module. Let us write r2 and w2

for their new addresses.
The PLC has been repaired electrically, but a correction of software is

also necessary. A find-replace edition of its source code could help, but with
high probability of some incorrect or forgotten changes. The better way
represents changing PLC memory by copying r2 to r1 before the program
scan, and w1 to w2 after the scan.

98

NewStart: Load r2;
Store r1;

Js OldProgram;

Load w1;
Store w2;

End;

OldProgram: . . .

In this case, the associativity of � composition has an interesting con-
sequence. Let Ĉnew and Ĉold be the transfer sets of the new and old pro-
gram evaluated by APLCTRANS algorithm, then r2, w2 /∈ dom(Ĉold) im-
plies r1, w2 /∈ dom(Ĉnew).

This follows directly from the associativity of � composition (see proof
of Proposition 3.8 on page 66). If OldProgram does not uses variables r2 and
w2 then the two instructions inserted before the call of OldProgram ensure
replacing all occurrences of r1 in Ĉold by r2 and two appended instructions
replace only one occurrence of w2 in the domain of new program by w1, so
the old input r1 and new output w2 will not participate in the transfer set of
the new program.

In other words, � compositions assures not appearing auxiliary vari-
ables, which are assigned before their usage, in the domain of the transfer
set of whole AP ∈ AProgram. But they remain in its codomain and their
proper recognition requires an extra information about their usage — that
is unsolvable by mere semantic analysis.

We can removed only possible Σ part of the auxiliary variables. PLC
input image is always rewritten during following input scan by new read data,
therefore no information can be passed to a next program scan in the input
image. If x ∈ Σ exists such that x ∈ coP (X̂) then x is surely a auxiliary
variable that has no influence of its state. Thus we have narrowed PLC
codomain by the intersection with Ω ∪ V .

Practical application of transfer sets need their evaluation to elements
of α(), introduced in Definition 3.1 (see page 31). The evaluation could
be performed by � operator, but such approach requires many additional
definitions.

Therefore, we rather convert a transfer set to a mapping. We have not
defined an ordering for the transfer sets, such supplement will be certainly
possible, but not too homogeneous with ↑ and ↓ operators. We will prefer a
mapping of transfer sets based on PLC codomains and domains introduced
above.

If X̂ is any transfer set on a storage S then its domain R = dom(X̂)
and PLC codomain P = coP (X̂) are finite sets of boolean variables, i.e
P,R ⊂ S ⊂ B. We may create their ordering, P = {pi ∈ P | i ∈ I, |I| = |P |},
as required by α() definition. Any pα ∈ α(P) is represented by a string with

99

length |I| bits, i.e. the permutations of 0 or 1 values that correspond to P
variables. We do the same for R.

The orderings of P and R allow a definition of ψ : α(R) → α(P) as a
mapping {0, 1}|R| → {0, 1}|P | which can be constructed as the union of |P |
mappings {0, 1}|R| → {0, 1} specified by:

fj(xi) : JbexpiK → {0, 1} where i ∈ |I| = |P | (4.2)

where bexpi ∈ Bexp+ is the boolean expression that belongs to x̂iJbexpiK ∈ X̂
t-assignment for xi ∈ P . We employed the fact that dom(x̂iJbexpiK) ⊆ R
and bexpi expression itself will map any rj ∈ α(R) to {0, 1}, j ∈ I, |I| = |R|
because R is the domain of X̂.

Definition 4.4 Let S be a storage S, which has as its subset (Ω ∪ V) ⊆ S,
and X̂ be any transfer set on S with non-empty finite PLC domain R =
dom(X̂) and non-empty finite PLC codomain P̂ = ĉoP (X̂). Let us write
P = coP (X̂) = co(P̂).

If some orderings of R and P are given then we define mapW (X̂) map-
ping by the following construction:

mapW (X̂)
df
= ψ : α(R) → α(P)

where ψ : α(R) → α(P)
df
=

|P̂ |⋃
i=1

(fi(xi) : α(R) → {0, 1})

where fi(xi) : α(R) → {0, 1} df
= fi(xi) : JbexpiK → {0, 1}

for all x̂iJbexpiK ∈ P̂
such that co(x̂iJbexpiK) = xi and xi ∈ P

Example 4.1

Practical application of the definition above is relatively easy. We demonstrate
its usage on the result of Example 3.11 (see page 79):

Ĉ1 =
{
f̂reg J1K , ẑ JyK , m̂ J(m ∧ x) ∨ (y ∧ ¬x)K

}
that was defined for the storage S with BPLC subsets:

Σ = {x, y}, Ω = {z}, and V = {m} .

We first calculate Ĉ1 domain as the set of variables, on which its t-assignments
depends:

dom(Ĉ1) = {m,x, y}

then we easily derive PLC domain from it by finding corresponding t-assignments
in Ĉ1 ↑ S:

d̂omP (Ĉ1) = {m̂ J(m ∧ x) ∨ (y ∧ ¬x)K , x̂ JxK , ŷ JyK}

100

To obtain PLC codomain of Ĉ1, we select (from Ĉ1) only t-assignments for
variables in Ω ∪ V a we omit all canonical and constant t-assignments. In our
example, we only delete f̂reg J1K from Ĉ1 which yields:

ĉoP (Ĉ1) = {m̂ J(m ∧ x) ∨ (y ∧ ¬x)K , ẑ JyK}

coP (Ĉ1) = co
(
ĉoP (Ĉ1)

)
= {m, z}

then we construct mapP (X̂) as 〈m, z〉 = ψ(〈m,x, y〉) which is given by the
union of two mappings:

f1(m) : J(m ∧ x) ∨ (y ∧ ¬x)K → {0, 1} and f2(z) : JyK → {0, 1}

The mapping can be easily rewritten into definition languages of many checker
tools.

Notice that the transfer sets of whole APLC program, Ĉ in the exam-
ple above, has its domain that does not contain internal variables of APLC
machine, because an evaluation stack and freg are initialized by the termi-
nal End instruction, therefore the rightmost composition always substitutes
them by constants. Internal variables of APLC machine may be certainly
present in co(Ĉ), but never in dom(Ĉ). It follows from the properties of �
compositions discussed in the previous section.

Proposition 4.1 (Automaton generated by AProgram)
Let AL ∈ AProgram be any APLC program defined on Σ inputs, Ω outputs,
and V internal variables. If Ĉ transfer set of AL was created by APLC-
TRANS, then the automaton generated by AL is the tuple

M(Ĉ)
df
= 〈X,Y,Q, δ, q0, ω〉 (4.3)

where is
X = α

(
dom(Ĉ) ∩ Σ

)
- input alphabet,

Y = α
(
co(Ĉ) ∩ Ω

)
- output alphabet,

Q = α
(
coP (Ĉ) ∩ dom(Ĉ)

)
- set of the states,

q0 ∈ Q - an initial state of the automaton,

δ = mapP

(
ĉoP (Ĉ) ∩ d̂omP (Ĉ)

)
- transition function δ : Q×X → Q,

y = mapP

(
Ĉ ∩̂ Ω

)
- output function ω : Q×X → Y

Proof: Both δ and ω are defined by the t-assignments that are converted
by mapP into normal boolean functions (mappings). The equations for X,
Y , and ω follow directly from properties of automata and PLCs, which read
input data only into Σ and send to peripherals only data from Ω. Y and

101

ω are not restricted to coP (Ĉ) because the definition above contains no
assumption about the usage of Ω variables.

We will only prove the expression for δ transition function. Q is derived
from it. Associativity � ensures that auxiliary variables do not appear in
domain. Since transition function δ of automata is defined as a mapping
δ : Q ×X → Q and δ only depends on such t-assignments that change the
variables belonging to the intersection of the domain and codomain. Let us
write Z =

(
coP (Ĉ) ∩ dom(Ĉ)

)
for the intersection, in this proof only.

We proceed by contradiction. Let v ∈ Ω ∪ V be a variable such that v
has any influence on some q ∈ Z and v /∈ Z.

Therefore v must be missing either in the domain or in the codomain. If
v /∈ dom(Ĉ) then v has no influence on any t-assignment in X̂ including v̂ t-
assignment of itself. In this case, either v̂ value depends on another variables
or v̂ ∈ ÊS , so v̂ has been removed by ↓ compression, In both situations, v
cannot store any state information.

Finally, we consider the case v /∈ coP (Ĉ), but it means that v value is
never changed and it immediately follows that v is constant.

We reach a contradiction to our assumption that v has any influence on
a value on q ∈ Z. 2

Notice that M(Ĉ) belong to Mealy’s family in general, because ω is
created from ĉoP (Ĉ) and (dom(ĉoP (Ĉ))∩Σ could be (possibly) a non empty
set. Also, coP (Ĉ)∩ dom(Ĉ)∩Ω need not be empty and a part of states can
be stored in output variables.

The fundamental proposition of the theory of automata says that any
automaton of Mealy’s family can be converted to automaton of Moore’s
family, and vice versa. The both automata have an equivalent behavior but
Mealy’s form of an automaton has always the number of its states less or
equal than corresponding Moore’s form of that automaton.

Therefore, Proposition 4.1 has improved Definition 3.3 (see page 33)
and presented much better model for BPLC introduced in Definition 3.2
(see page 32).

The previous results allow presenting the fundamental proposition of this
subsection:

Proposition 4.2 Any program of a binary PLC can be modeled by an au-
tomaton of Mealy’s family if and only if it is expressible as an APLC program
AL ∈ AProgram.

Proof: We have shown in this chapter that APLC program is always con-
vertible into an automaton of Mealy’s family. We prove the reverse implica-
tion by a construction of APLC program from an automaton. The structure
of final APLC program is shown in Table 4.1 on page 105.

102

Let M = 〈X,Y,Q, δ, q0, ω〉 be an Mealy’s automaton with X input al-
phabet, Y output alphabet, Q states, q0 an initial state, transition function
δ : Q×X → Q, and output function ω : Q×X → Y .

We define an ordering of X,Y, and Q and we find least integer numbers
that satisfy the constraints:

nX ≥ log2 |X|, nY ≥ log2 |Y |, and nQ ≥ log2 |Q|

Using them we construct the sets of codes

Xα = α(I) where |I| = nX

Yα = α(I) where |I| = nY

Qα = α(I) where |I| = nQ

Each set is a language defined over {0, 1}∗ and its strings are expressible
as a concatenation of {0, 1} alphabet elements. We convert the elements to
values of binary variables. If xα ∈ Xα is a string then we express its values
with the aid of Xv = {x1, x2, . . . xnX} variables with xα = x′1.x

′
2. . . . x

′
nX

values from {0, 1}. The strings of Yα and Qα are expressed similarly to Yv

and Qv.
We have obtained the coding sets whose cardinalities are equal or greater

than cardinalities of X, Y , and Q and therefore we may assign unique ele-
ment (i.e. a unique string of 0 and 1) to each member of X, Y , and Q.

Now we add binary variables defined in Xv, Yv, and Qv, which allows to
convert δ to the set of nQ boolean functions of nQ + nX variables Qv ∪Xv.
We also perform similar conversion of ω to the set of nY boolean functions
of nQ + nX variables Qv ∪Xv. These functions define two mappings:

Fδ : {0, 1}nQ+nX → {0, 1}nQ

Fω : {0, 1}nQ+nX → {0, 1}nY

The both mappings assign different outputs and so we join them to one
set F of nQ + nY boolean functions of nQ + nX variables Qv ∪Xv.

We proceed to writing APLC program. To assure proper evaluation of
all expressions, we must copy all variables in Qv to new set Qv of temporary
variables. We denote its members by underlining.

Replacing references to variables in F expressions by these underlined
variables yields F set of nQ + nY boolean functions of nQ + nX variables
Qv ∪Xv, which differ from F only by readdressing of variables.

Now all expression strictly operate with the same data and evaluated
results do not interfere with inputs. Since associativity properties of �
remove these temporary copies, they do not increase the number of states.

To perform initialization, we add new input fs to Xv, which will signal
the first program scan after starting program. Manufactured PLCs pro-

103

vide this initialization by different ways, but all methods are convertible to
invocation of an initialization subroutine when first-scan signal appears. 1

When fs will be active we invoke copying variables values in q0 =
q01. . . . q

0
nQ

to Qv.
2

We have shown that a binary PLC can be expressed as an automaton of
Mealy’s family if and only if it is possible to rewrite its program into APLC
language. Mealy’s automata also include automata of Moore’s family as a
subset and are always coverable to them. Therefore, the proposition holds
for the both types of automata.

Hypothesis 4.1 Any PLC program can be modeled by an automaton of
Mealy’s family iff it is expressible as an APLC program AL ∈ AProgram.

Critique: We have shown in Proposition 4.2 that this hold for binary
PLC. To prove the same for any PLC, we should first create a conversion
mechanism for all PLC programs, which is very complex task due to wide
range of PLC types. Therefore the hypothesis above will probably remains
only a hypothesis forever. ?

1Some PLCs has this signal built in as read only system bit that behaves as an addi-
tional input, eg. PLC 5 or SLC 500.

104

Start : Init

Load fs
Jsc Initialize

 q0

Load q1
Store q1
. . .
Load qnQ

Store qnQ


Copying data

Load bexpq1

Store q1
. . .
Load bexpqnQ

Store qnQ


Evaluate δ

Load bexpy1

Store y1

. . .
Load bexpynY

Store ynY

End


Evaluate ω

Initialize : Load q01
Store q1
. . .
Load q0nQ

Store qnQ

End


Initialize memory

Table 4.1: APLC Program of Mealy’s Automaton

105

4.2 Decomposition of APLC Automaton

The decomposition formalizes the approach that is often used for debugging
and troubleshooting of PLCs. When programmers and operators search
for errors, they intuitively simplify a program by reducing states taken in
question, which generally consists of ignoring some aspects of the program
involved that have no influence to an analyzed function.

Since many systems have their natural division into components or mod-
ules, proving properties of individual parts could imply some specifications
about the entire system. These techniques are a part of the compositional
verification [McM00].

This approach can reduce a complex problem P |= Φ (P satisfies Φ) to
a set of smaller problems P ′

i |= Φ′
i, i = 1, . . . , n. If we denote O(x) compu-

tational complexity of a task x then we try to find out such decomposition
that satisfies:

n∑
i=1

O(P ′
i |= Φ′

i) < O(P |= Φ) (4.4)

(P ′
1 |= Φ′

1) ∧ (P ′
2 |= Φ′

2) ∧ . . . ∧ (P ′
n |= Φ′

n) ⇒ (P |= Φ) (4.5)

There are several ways of dividing systems to smaller units, but the most
powerful is parallel decomposition if it exists, because many properties of
individual parallel systems are preserved for whole process.

Proposition 4.3 (Parallel composition)
Let M1 and M2 be automata generated by two APLC programs that were
defined on the same storage S = {Σ, V,Ω}:

Mi =
〈
Xi, Yi, Qi, δi, q

i
0, ω1

〉
for i = 1, 2

such that Xi = α(Σi) for i = 1, 2 and Σ1 ∪ Σ2 ⊆ Σ. Suppose that two
mappings from X = α (Σ1 ∪ Σ2) to X1 and X2 can be constructed such that
they map each x to corresponding x1 and x2. Then, the parallel composition
is defined as

M = M1||M2
df
= 〈X,Y1 × Y2, Q1 ×Q2, δ, q0, ω〉

where q0 =
〈
q10, q

2
0

〉
δ (〈q1, q2〉 , x) = 〈δ1(q1, x1), δ2(q2, x2)〉
ω (〈q1, q2〉 , x) = 〈ω1(q1, x1), ω1(q2, x2)〉

for all q1 ∈ Q1, q2 ∈ Q2 and x ∈ X.

If Σ1 ∩ Σ2 = ∅ then the definition corresponds to a usual definition
of cartesian product without synchronization [BBF+01, page 14], in which
X = X1×X2. Otherwise, it is state parallel composition with shared inputs.

106

Many publications dealing with automata present the definitions of par-
allel compositions. Demlová and Koubek [DK90] also dealt with the reverse
problem — the decomposition of a Mealy’s automaton to two parallel ones.
Their work is probably unique.

Using their conclusions we have created the algorithm for decomposing of
PLCs programs published in [Šus02]. But this work has been now overcome
by APLCTRANS, which finds out the decomposition in more cases than
old algorithm. Therefore, we outline only such definitions and propositions
from [Šus02] and [DK90], which we will refer in the next parts to.

Definition 4.5 Given an automaton M = 〈X,Y,Q, δ, q0, ω〉 of Mealy’s
family. Equivalence ρ on set Q of states is called an automaton congruence
of automaton M, if 〈δ(q, x), δ(r, x)〉 ∈ ρ holds for any input x ∈ X and for
all pairs of states q, r ∈ Q such that 〈q, r〉 ∈ ρ.

Definition 4.6 Let M = 〈X,Y,Q, δ, q0, ω〉 be an automaton of Mealy’s
family, and given ρ automaton congruence of automaton M, then

M/ρ
df
=
〈
X,Y ′ = Q/ρ ×X,Q′ = Q/ρ, δ′, ω′

〉
(4.6)

is called state factor automaton, if the following holds

δ′ (ρ̃(q), x) = ρ̃ (δ(r, x))
ω′ (ρ̃(q), x) = 〈ρ̃(q), x〉

where ρ̃ denotes factor set (see page 137).

Proposition 4.4 An automaton M has a non trivial state parallel decom-
position if and only if two non trivial separating automaton congruence of
automaton exist. Let us write ρ and τ for them, then M/ρ and M/τ are
non trivial state parallel decompositions of automaton M.

Proof: The proof is proceeded by the construction of the automaton and
uses terminology that was not presented above. Full proof was published in
[DK90, page 174] 2

Automaton congruence of automaton determines the completeness of
state parallel decomposition and allows its construction. But known Kong’s
algorithm for searching automaton congruences of automaton [DK90, page
264] has complexity O(|Q|2) where |Q| denotes the number of states. Its
direct usage for automata generated by an APLC programs means a me-
thodical anachronism — we generate an automaton that requires a laborious
reduction. Decomposing APLC program offers more methodical approach.
We only need to specify when APLC program will generate the automaton,
in which an automaton congruence of automaton exists.

107

Figure 4.1: Separating Equivalences on Sets of Indexes

Definition 4.7 (Equivalence on set of indexes)
Let W be e non empty finite ordered set of binary variables and let us write
K for its index set K = I, |I| = |W |. We denote by W [i] variable w ∈ W
with index i ∈ K. Let B be a subset of W then we define ix(B⊆W) (read
the set of B indexes on W) and the equivalence on this set as the following:

ix(B⊆W)
df
= {i |W [i] ∈ B }

L≡ df
= {〈x, y〉 ∈W ×W | x[i] = y[i] for all i ∈ L = ix(B⊆W)}

Verifications of PLCs often lead to some equivalences on sets of indexes.
For example, if we should verify CTL safety property AG¬(x∧ y) i.e., both
x and y will never go true, then we do not check a reachability of one state.
In actuality, if we denote state variables of a PLC by W , then this property

108

requires checking non reachability of states defined by the set:

{q ∈ α(W) | (q[i] = 1) ∧ (q[j] = 1) for all i, j ∈ ix ({x, y}⊆W)}

Therefore, many verification properties should be transformed into equiv-
alences on set of indexes. To show their connection to an automaton con-
gruences of automaton, we need next proposition, whose construction is
outlined in Figure 4.1 for a better readability.

Proposition 4.5 Let W be a non empty ordered set of n = |W | binary
variables with given non empty subset B ⊆W . Let us write Rα(B⊆W) for
the equivalence on set α(B) defined as:

Rα(B⊆W)
df
=

{
〈x, y〉 ∈ α(W)× α(W) | x L≡ y where L = ix(B⊆W)

}
then two equivalences Rα(B⊆W) and Rα((W −B)⊆W) create a system of
separating equivalences on set α(W).

Proof: The equivalences on the set of indexes are certainly reflexive, sym-
metric and transitive, because all these properties directly follow from com-
paring their elements by = operator.

We must only show that Rα(B⊆W)∩Rα((W −B)⊆W) = ∆W to prove
separating property i.e., the intersection of equivalences is trivial equivalence
(see page 137). We will proceed by a contradiction. Let u, v ∈ α(W) be two
variables u 6= v such that

〈u, v〉 ∈ Rα(B⊆W) and 〈u, v〉 ∈ Rα ((W −B)⊆W)

It means that they satisfy the conditions of the both equivalences. Let us
write I1 = ix(B⊆W) and I2 = ix((W −B)⊆W), then

u
I1≡ v and u

I2≡ v

Applying equality I = I1 ∪ I2 = ix(W ⊆W) where |I| = |W | yields u
I≡ v.

It means u = v and we have a contradiction.
Now we show that the intersection is exactly ∆W , but this follows from

the fact that the both equivalences contain pairs 〈x, x〉 and all such pairs,

because x
J≡ x holds for any x ∈ α(W) and any arbitrary non empty subset

J ⊆ I, |I| = |W |. 2

Using separating properties and automaton congruence of automata we
determine the soundness of parallel decomposition of automaton generated
by APLC program.

109

Proposition 4.6 (Soundness) Let AL ∈ AProgram be APLC program
defined on storage S = {Σ, V,Ω} and given its transfer set Ĉ created by
APLCTRANS. If two transfer sets Ĉ1 and Ĉ2 exist such that they satisfy
the following:

∅ = coP (Ĉ1) ∩ coP (Ĉ2) (4.7)
coP (Ĉ) = coP (Ĉ1) ∪ coP (Ĉ2) (4.8)

∅ = coP (Ĉ1) ∩ dom(Ĉ2) (4.9)
∅ = coP (Ĉ2) ∩ dom(Ĉ1) (4.10)

then M(Ĉ) = M1(Ĉ1) || M2(Ĉ2).

Proof: First, we show the existence of the system of separating equivalences
for M(Ĉ). We utilize the fact that dom(Ĉ) = dom(Ĉ1) ∪ dom(Ĉ2), which
follow directly from Definitions 4.2 and 4.3 of transfer set domains and
Equation 4.8.

Equations 4.7 and 4.8 determine that Ĉ is separated into two parts,
which can share only t-assignments belonging to Σ, because they are not
included in PLC codomains. But we have shown in Proposition 4.1 that
t-assignments of Σ always correspond to temporary variables and have no
influence to the states.

Proposition 4.1 has shown that the states equal to Qi = α(Wi) where
Wi = coP (Ĉi)∩dom(Ĉi) for i = 1, 2. It certainly holds that W ⊇ (W1∪W2)
whereW = coP (Ĉ)∩dom(Ĉ). We prove thatW = W1∪W2 by contradiction.

Let x ∈ W be a variable such that x /∈ W1 and x /∈ W2. But x should
satisfy x ∈ coP (Ĉi) for either i = 1 or i = 2 necessarily, otherwise x does
not belong to Q defined in Proposition 4.1, because coP (Ĉ) was divided into
two parts (Equations 4.7 and 4.8), hence x must belong to one of them.

Suppose that x ∈ coP (Ĉ1), otherwise we swap the indexes. Equation
4.9 and assumption x /∈ W1 yields x /∈ dom(Ĉ2). But W is defined as the
intersection of Ĉ domain and codomain. To satisfy x ∈ W , it should hold
that x ∈ dom(Ĉ1). It yields that x ∈W1 and we have a contradiction.

Thus W = W1 ∪W2. Therefore, Rα
1 (W1⊆W) and Rα

2 (W2⊆W) are the
system of separating equivalences on α(W).

We show that this system is the automaton congruence of automaton
M(Ĉ) = M1(Ĉ1)||M2(Ĉ2) by its construction. Parallel composition of
M1||M2 has the set of states Q = Q1 ×Q2, where Qi = α(Wi) for i = 1, 2.
Because W1 ∩W2 = ∅, then Q = α(W1) × α(W2) corresponds to the union
of W1 and W2, which yields Q = α(W1 ∪W2).

Equation 4.7 yields the similar conclusions for output alphabet Y and
also for output function ω which is based on Y , as the following

Y = Y1 × Y2 = α
(
co(Ĉ1 ∪ Ĉ2) ∩ Ω

)
ω = mapP

((
Ĉ1 ∪ Ĉ2)

)
∩̂ Ω

)
110

Equations 4.9 and 4.10 allow to express the transition function as

δ (〈q1, q2〉 , x) = 〈δ1(q1, x1), δ2(q2, x2)〉

=

〈
mapP

(
ĉoP (Ĉ1) ∩ d̂omP (Ĉ1)

)
,

mapP

(
ĉoP (Ĉ2) ∩ d̂omP (Ĉ2)

) 〉

= mapP

(
ĉoP (Ĉ1 ∪ Ĉ2) ∩ d̂omP (Ĉ1 ∪ Ĉ2)

)
and we must show that δ satisfies

〈δ(q, x), δ(r, x)〉 ∈ Rα
i (Wi⊆W) where i = 1, 2

for any input x ∈ X and for all states q, r ∈ Q such that the pair of the
states 〈q, r〉 ∈ Rα

i (Wi⊆W).
In other words, all states belonging to the same equivalence class either

should remain in it or they should be moved to an identical equivalence class
simultaneously.

But this holds obviously because Equations 4.9 and 4.10 assure cross-
independency of Ĉ1 and Ĉ2. T-assignments of Ĉ1 do not depend on coP (Ĉ2),
thus they only change W1 variables according to inputs and therefore all
states belonging to one equivalence class Rα

1 (W1⊆W) are moved by transi-
tion function to identical equivalence class concurrently.

The same property satisfies Ĉ2 and Rα
2 (W2⊆W). Thus, two non trivial

separating automaton congruency of automaton exist, if M(Ĉ) is state par-
allel composition of M1(Ĉ1) and M2(Ĉ2). 2

4.2.1 Algorithm for Parallel Decomposition

Inputs: Let Ĉ be the transfer set of APLC program defined of storage
S = {Σ, V,Ω}.

Initilization: We first calculate ĉoP (Ĉ) (see Definition 4.2 on page 97),
then we create the following sets:

Di = {co(ŵi)} ∪ (dom(ŵi)− Σ) (4.11)
for all ŵi ∈ ĉoP (Ĉ), i ∈ I, |I| = |ĉoP (Ĉ)|

Each set Di contains one codomain variable and the domain of its cor-
responding t-assignment, from which inputs are subtracted, because their
sharing is allowed. If we do not want inputs to be shared, we create Di

without subtracting Σ. We denote the ordered set of all Di by D.

Step 1: We assign integer i := 1;

111

Step 2: First, we assign boolean variable m := false; and then, we evalu-
ate for Di its intersections with all Dj ∈ D such that j 6= i, j ∈ |I|, |I| = |D|.
If any Di ∩Dj 6= ∅ then we assign Dj := Dj ∪Di; and m := true;

If m = true after evaluating all intersection then we assign set Di := ∅;
to specify that Di was split in other sets.

Step 3: We increment i by 1. If i ≤ |D| then we repeat Step 2, otherwise
we delete from D all empty sets.

If we have deleted at least one empty set from D and |D| > 1, then we
go to Step 1, otherwise to End.

End: If |D| > 1 then D contains the sets of variables that determine
searched parallel decompositions. It always holds that Di ∩ Dj = ∅ for
any i, j ∈ I, |I| = |D| such that i 6= j, otherwise the algorithm could not
terminate

We select any Di ∈ D and create parallel decomposition given by the
equivalences of set of indexes Di and coP (Ĉ)−Di.

If |D| > 2 then the decomposition can be repeated until obtaining |D|
parallel automata.

4.2.2 Complexity and Correctness

The cardinality of |D| is reduced at least by 1 at Step 3 when the algorithm
continues. Thus, if we denote n = |coP (Ĉ)| then the algorithm always
terminates at most after providing

n∑
i=2

i2 =
n(n+ 1)(2n+ 1)

6
− 1

intersections in Step 2. Hence its complexity is O(n3).
If |D| > 1 when the algorithm has terminated, then Di ∩Dj = ∅ for any

i, j ∈ I, |I| = |D|. Because every Di contains the unions of domains and
codomains of all dependent t-assignments, the transfer sets

Ĉ1 = Di ∩̂ Ĉ and Ĉ2 = Ĉ − Ĉ1

satisfy all conditions of Proposition 4.6.

Example 4.2

The example depicted in Figure 4.2 does not reflect a real technology exactly
and it shows common imperfections of many examples. They are expected to
be simple and comprehensible, but also very terse, otherwise they would not
demonstrate anything interesting.

112

Figure 4.2: Example of Mix Tank

Suppose that we have a mix tank with swirler swr and pump pmp. They are
equipped by centrifugal indicators swrspd and pmpspd that signal that related
drive have reached an operating speed. The level of a liquid in the tank is
watched by four indicators, of which dn and up serve as working sensors of
normal minimal and maximal levels. These are duplicated by dne and upe
indicators to increase safety. If liquid level has subsided to dne or climbed
to upe, then something is out of order. Hence the alarm (erru or errd) is
announced on a remote operator panel until clr button is pressed. This approach
assures drawing attention of operators who should inspect the reason of such
malfunction.

To prolong lifetime of swirler screen, both pump and swirler should not run
long at operating speeds concurrently. We verify neither AG¬(swr ∧ pmp) nor
AG¬((swrspd ∧ pmp)∨ (swr ∧ pmpspd) CTL propositions, because concurrent
motion of the swirler and pump is not a critical error. We should only check,
whether the both devices do not operate too long at full power simultaneously.
This vague formulation corresponds well to a non professional’s statement of
some verification problem.

The easiest solution leads to adding a check that will prevent too long
concurrent motion of the pump and swirler. But we were not asked to rewrite
a program. Our task consists in verifying the ladder diagram in Figure 4.4 (see
page 116). Its PLC S7-210 statement list and corresponding APLC instructions
are shown in Table 4.2 (see page 117). APLCTRANS gives result:

33 statements in 1 compositional block. 13 variables.
Composed in 0.14 s. Result=
{ @f[1], eu1[clr], clredge[clr.!eu1],

pmp[dn.!swrspd.!up.!upe+dne.!swrspd.!up.!upe+pmp.!up.!upe],
swr[!dn.!dne.!pmpspd+!dn.!dne.swr],

113

erru[!clr.upe+!clr.erru+eu1.upe+eu1.erru],
errd[!clr.dne+!clr.errd+eu1.dne+eu1.errd] }

Extracting common parts in and-terms we obtain the transfer set:

Ĉ =



f̂reg J1K
êu1 JclrK
ĉlredge Jclr ∧ ¬eu1K
p̂mp

r
¬up ∧ ¬upe ∧

(
(¬swrspd ∧ (dn ∨ dne)) ∨ pmp

)z
ŝwr J¬dn ∧ ¬dne ∧ (¬pmpspd ∨ swr)K
êrru J¬(clr ∧ ¬eu1) ∧ (upe ∨ erru)K
êrrd J¬(clr ∧ ¬eu1) ∧ (dne ∨ errd)K


We calculate its domain and PLC codomain:

dom(Ĉ) =
{

clr , eu1, up, upe, dn, dne,
swr , swrspd , pmp, pmpspd , erru, errd

}
coP (Ĉ) = {eu1, clredge, pmp, swr , erru, errd}

W = coP (Ĉ) ∩ dom(Ĉ) = {eu1, swr , pmp, erru, errd} (4.12)

which yield 32 states Q = α(W) of generated automaton (Proposition 4.1 on
page 101).

We try its parallel decomposition. We create set D (Equation 4.11 on page
111) and list its members in the following table together with D contents at
the beginning of Step 3.

Initilize Step 3: i = 1 ... i = 5 i = 6
D1 = eu1 ∅ ∅ ∅
D2 = clredge, eu1 clredge, eu1 ∅ ∅
D3 = pmp pmp pmp pmp
D4 = swr swr swr swr
D5 = erru, eu1 erru, eu1 erru, eu1, clredge ∅
D6 = errd, eu1 errd, eu1 errd, eu1, clredge erru, errd,

eu1, clredge

The result offers 3 possible decomposition to two automata and 1 to three
automata, but we verify concurrent behavior of the pump and swirler, therefore
we may chose only one decomposition defined by D3 ∪D4 and D6.

2

Hence we will verify the automaton given by

Ĉ1 =

{
p̂mp

r
¬up ∧ ¬upe ∧

(
(¬swrspd ∧ (dn ∨ dne)) ∨ pmp

)z
ŝwr J¬dn ∧ ¬dne ∧ (¬pmpspd ∨ swr)K

}

114

Figure 4.3: Decomposed Automaton of Mix Tank

The automaton could be inspected by some model checker, but we depict
its diagram for illustration in Figure 4.3, in which logical negations are denoted
by overlines for better readability. The program violates the requirement by
the transition which is emphasized by bold line. This situation occurs under
following conditions:

1. the level of liquid is above dn and dne indicators,

2. the pump is operating,

3. but pump speed fall down for a moment and its speed indicator gives
short 0 pulse, for example due to sediments in liquid.

In this case the pump will run with the swirler concurrently until the level of
liquid rises to upper indicators.

The probability of occurring of this situation above depends on running
characteristics of the pump, swirler and speed indicators. But such malfunction
could appear very rare under fatal conditions, which would means that it need
not be detected by program tests.

2Notice that Di specifies only variables which t-assignments are included in a decom-
position, for example D6 leads to an automaton with 8 states (see Equation 4.12).

115

Figure 4.4: S7-210 Ladder Diagram of Mix Tank

116

APLC program S7-210 STL Comment

Init; NETWORK 1 Positive Transition of clr input
Load clr; LD ”clr”
REdge eu1; EU EU uses hidden variable - it was added
Store clredge; = ”clredge”

Init; NETWORK 2 Pump control
Load dn; LD ”dn”
Or dne; O ”dne”
And !swrspd; AN ”swrspd”
Set pmp; S ”pmp”, 1

Init; NETWORK 3
Load up; LD ”up”
Or upe; O ”upe”
Res pmp; R ”pmp”, 1

Init; NETWORK 4 Swirler control
Load !dn; LDN ”dn”
And !dne; AN ”dne”
And !pmpspd; AN ”pmpspd”
Set swr; S ”swr”, 1

Init; NETWORK 5
Load dn; LD ”dn”
Or dne; O ”dne”
Res swr; R ”swr”, 1

Init; NETWORK 6 Errors of level control
Load upe; LD ”upe”
Set erru; S ”erru”, 1

Init; NETWORK 7
Load dne; LD ”dne”
Set errd; R ”errd”, 1

Init; NETWORK 8 Clearing errors
Load clredge; LD ”clrmem”
Res errd; R ”errd”, 1
Res erru; R ”erru”, 1

End

Table 4.2: APLC Mix Tank Program

117

4.3 Detecting Races

The designation ”races” was presented by Aiken, Fähndrich, and Su in
[AFS98]: ”If under fixed inputs and timer and counter states, an output
x changes from scan to scan, then there is a relay race on x”. The authors
have developed the algorithm capable of finding races, but not proving their
absence:

The absence of races cannot be proven by our analysis due to ap-
proximations and due to the finite subspace of input assignments
that are sampled. (quoted from [AFS98, page 10])

In contrast, if PLC program is convertible to APLC language, then
APLCTRANS proves the absence of races. Before presenting the defini-
tion, we give the explanation of the races.

The simplest race is an assignment: x = ¬x because PLCs operate in
endless loops so the assignment is in fact executed as:

RaceA: Load ¬x; repeat
Store x; ⇒ x := NOT x;
End; until false;

The transfer set of RaceA program is ĈA = x̂ J¬xK.
In the terms of the automaton theory, a race represents instable state,

from which an automaton moves to another state in next time step, though
inputs have not changed. However, not all races are errors, they are some-
times created intentionally. For example, an edge detection will result in a
race. We apply one for improving RaceA program.

To avoid jump, we replace ¬ by non equivalence ¬x = x 6≡ 1 and we
utilize the fact that yedge equals to 1 only for such scan, in which y went
from 0 to 1.

RaceB: Load y; repeat
REdge ymem; yedge := (y AND (NOT ymem));
Store yedge; ⇒ ymem := y;
Load x 6≡ yedge; x := x XOR yedge;
Store x; until false;
End;

APLCTRAN result is:

Composed in 0.01 seconds. Decoding result...
Result={ ymem[y], yedge[y.!ymem], x[y.!ymem.!x+!y.x+ymem.x] }

Now, the execution of x = ¬x is synchronized by a rising edge of another
input y and it is performed only once when y goes from 0 to 1. After

118

rewriting formula for x the transfer set of RaceB program is:

ĈB =

{
ŷmem JyK , ŷedge Jy ∧ ¬ymemK ,
x̂ J(y ∧ ¬ymem ∧ ¬x) ∨ ¬((y ∧ ¬(ymem) ∨ ¬x)K

}
RaceA program without the edge detection has endless race in x. The

improved program RaceB contains the race in yedge, but this race will dis-
appear after next program scan.

All edge detections represent first mathematical differences of inputs and
their usage is necessary, because many operations require synchronization
to assure their single executions. Hence, the most of PLC programs have
races with the length 1 i.e., the races that disappear after 1 next scan.

Longer races usually indicate an inefficient coding. For example, we can
insert in front of RaceB program four statements:

RaceC Load q1;
Store q2; ⇒ q2:=q1;
Load x; q1:=x;
Store q1;

RaceB: Load y; . . .

We have obtained RaceC program with transfer set:

ĈC = ĈB ∪ {q1 JxK , q2 Jq1K}

RaceC program contains several races. If positive edge of y is detected,
then yedge goes to 1 for one scan and x is negated. But changed x value
will propagate to q1 in the second scan and to q2 in the third scan. Hence,
the lengths of races are 1 for yedge 1, 2 for q1, and 3 for q2.

However, RaceC program represents a nonsensical code. The output q2
reacts to a change of y with a delay of three scans that could have random
length because PLC scans are usually irregular. Similar operations are also
clumsy — if an output must be delayed then timers offer more reliable
solutions, which will be moreover clear at first glance when someone looks
at the source code.

If we execute these four instructions after RaceB and swap their order,
then new program will evaluate the same result, but without any random
delay.

RaceD: Js RaceB;
Load x;
Store q1;
Load q1;
Store q2;
End;

RaceB: Load y;
. . .

119

RaceD has the transfer set

ĈD = ĈB ∪
{
q̂1 J(y ∧ ¬ymem ∧ ¬x) ∨ ¬((y ∧ ¬(ymem) ∨ ¬x))K ,
q̂2 J(y ∧ ¬ymem ∧ ¬x) ∨ ¬((y ∧ ¬(ymem) ∨ ¬x))K

}
where the both expressions equal to the expression of x̂ JbexpxK ∈ ĈB.

It follows from previous considerations that 1 scan races are programmed
intentionally in most cases, but longer races will signal with higher probabil-
ity that ”something is rotten in the states of PLC”. They are either program
errors or signs of improper coding.

Definition 4.8 Let AL ∈ AProgram be any APLC program defined on S =
{Σ, V,Ω} storage and given its transfer set Ĉ created by APLCTRANS. If
k is the least number satisfying:∏̂k+1

i=1
ĈW =̂

∏̂k+2

i=1
ĈW where ĈW = Ĉ ∩̂ (V ∪ Ω) (4.13)

then we say that AL has race of k-th order.

We have based the definition on the transfer set, from which have been
removed all t-assignments of inputs Σ. The necessity of this intersection
follows from the considerations discussed on page 98. Some operations can
change the contents of input variables, because they are stored in input im-
age, but the next scan always rewrites inputs by their new values. If no input
has changed, then all inputs are reset to canonical t-assignments. Removing
input t-assignments gives the same result due to ↑ operator properties (see
pages 61 and 64).

Definition 4.8 also gives the algorithm for testing races. The results can
lead to large functions. Checking equivalences allows St̊almarck’s patented
proof procedure for propositional logic [SS98] that has worst case complexity
exponentially depended on depth of formula. In many cases, we do not need
check all equivalences.

Proposition 4.7 Let Ĉ and Ĉr be transfer sets defined on S = {Σ, V,Ω}
and x̂ ∈ Ĉ any given t-assignment. If x̂ satisfies either

dom(x̂) ⊂ Σ (4.14)

or all three following conditions:

x̂ ◦ x̂ J1K =̂ ¬ (x̂ ◦ x̂ J0K) (4.15)
dom(x̂)− Σ = co(x̂)

x̂ =̂
(
co(x̂) ∩̂ Ĉr

)
then x̂ ∈ (Ĉ � Ĉr).

120

Proof: Equation 4.14 specifies that x̂ should only depend on inputs. They
are canonical t-assignments according to Equation 4.13 i.e., members of
ÊS , which is an identity element of t-assignments monoid (Proposition 3.9).
Hence, x̂ value will not change.

The second and third conditions of Equation group 4.15 require that x̂
depends only on itself and it is =̂ equal in the both transfer sets Ĉ and Ĉr.
Hence, � composition will substitute x̂ into itself as x̂ ◦ x̂.

To prove the first condition of Equation group 4.15, we rewrite x̂ with
the aid of Shannon’s expansion:

x̂ JbexpxK = x̂ J(x ∧ v1) ∨ (¬x ∧ v0)K (4.16)

where v1 = x̂ ◦ x̂1 J1K and v0 = x̂ ◦ x̂0 J0K evidently.
Now we substitute bexpx into itself. Let us write bexpy for the value of

ŷ = x̂ ◦ x̂. It yields

bexpy = ((x ∧ v1) ∨ (¬x ∧ v0)) ∧ v1) ∨ (¬ ((x ∧ v1) ∨ (¬x ∧ v0)) ∧ v0)
= (x ∧ v1) ∨ (x ∧ v0) ∨ (v1 ∧ v0) (4.17)

We want bexpy ≡ bexpx, which gives the condition

1 = (bexpy ≡ bexpx) = (bexpy ∧ bexpx) ∨ (¬bexpy ∧ ¬bexpx)

=
(

((x ∧ v1) ∨ (x ∧ v0) ∨ (v1 ∧ v0)) ∧ ((x ∧ v1) ∨ (¬x ∧ v0))
)

∨
(
¬((x ∧ v1) ∨ (x ∧ v0) ∨ (v1 ∧ v0)) ∧ ¬((x ∧ v1) ∨ (¬x ∧ v0))

)
1 = v1 ∧ ¬v2 (4.18)

Applying Equation 4.18 together with Equation 4.16 yields Equation
4.15. If x̂ satisfies this condition together with the other ones of the group,
then it will not change its value by composition. Therefore, it will hold that
x̂ ∈ (Ĉ � Ĉr). 2

Note: Equation 4.18 can be also derived by APLCTRANS. We verify the
proof by the composition of APLC program:

Proof: Load (x ∧ v1) ∨ (x ∧ v0); Store x;
Load (x ∧ v1) ∨ (x ∧ v0); Store y;
Load (x ∧ y) ∨ (¬x ∧ ¬y); Store r;
End;

Composed in 0.00 seconds. Decoding result...
Result={ r[v1+!v0], x[x.v1+!x.v0], y[x.v1+v1.v0+x.v0] }

APLCTRANS tool can convert results directly to LATEX2ε:

Ĉp = {r̂ Jv1 ∨ ¬v0K , x̂ J(x ∧ v1) ∨ (¬x ∧ v0)K , ŷ J(x ∧ v1) ∨ (v1 ∧ v0) ∨ x(∧v0)K}

121

Proposition 4.7 allows to determine that some t-assignments cannot have
a race, but it does not say, which t-assignment have a race. Moreover, it
requires satisfying many conditions, hence it excludes only small part of
t-assignments. The other must be checked as equivalences.

Example 4.3

We analyze races in ĈB. Suppose that storage

S = {Σ = {y}, V = {ymem, yedge},Ω = {x}}

then ymem satisfies Equation 4.14. It has no race certainly. The remaining
function must be checked by equivalences. Because ĈB do not contain any
t-assignments of Σ variables, we modify RaceB to evaluate Equation 4.13:

Js RaceB;
Js RaceB;
End

RaceB: . . .

APLCTRANS result is:

Composed in 0.01 seconds. Decoding result...
Result={ ymem[y], yedge[0], x[!y.x+y.!ymem.!x+ymem.x] }

We see that ymem has no race as expected, but yedge and x produce the race.
Now yedge satisfies Equation 4.14, because its domain is empty set. Inserting
another Js RaceB instruction yields the same result as above. Hence, program
have only normal races with length 1 generated by edge detection.

We also analyze the program in Example 4.2 (see page 112), whose transfer
set is on page 114. We can apply Equation 4.14 to eu1. The pump and swirler
satisfy the second and third condition of Equation group 4.15. Using the first
condition for the pump we obtain:

pmp = ¬up ∧ ¬upe ∧
(

(¬swrspd ∧ (dn ∨ dne)) ∨ pmp
)

v0 = ¬up ∧ ¬upe ∧ ¬swrspd ∧ (dn ∨ dne)
v1 = ¬up ∧ ¬upe

v1 ∨ ¬v0 = v1 ∨ ¬(v1 ∧ ¬swrspd ∧ (dn ∨ dne))
= v1 ∨ ¬v1 ∨ ¬(¬swrspd ∧ (dn ∨ dne))
= 1

Applying similar procedure to the swirler also proves that swr is race-free.
Hence, eu1, pmp, and swr have no race. The other variables require testing

by Equation 4.13

122

Composed in 0.03 seconds. Decoding result...
Result={ eu1[clr], clredge[0],
pmp[dn.!swrspd.!up.!upe+dne.!swrspd.!up.!upe+pmp.!up.!upe],
swr[!dn.!dne.!pmpspd+!dn.!dne.swr],
erru[!clr.erru+upe+eu1.erru],
errd[!clr.errd+dne+eu1.errd] }

The following compositions give the same transfer set. Hence, the program has
races of the first order.

123

4.4 Abstract PLC and Timed Automata

We have mentioned on page 28 that timers substitute for an incomplete
knowledge of the PLC environment, for example some operations can be
checked by measuring their time. PLC programs utilize timers frequently
and models, which do not consider time behavior, have either limited appli-
cation or require skilful preparations of control program to allow its partial
verification.

APLC machine does not contain any elements for expressing time char-
acteristics. In reality, they have not been added, because they are not needed
for converting PLC programs to timed automata. In this section, we explain
how APLCTRANS could provide such conversions and we will demonstrated
them by a simple example.

Timed finite automata were proposed by Alur and Dill in [AD94]: ”to
model the behavior of real timed system over time”. Their timed automata
are based on ω-automata, mainly on Büchi and Muller types. They may be
derived from automata of Mealy’s family by adding the set of starting states
and the set of acceptance conditions. These automata recognize infinite ω-
languages (see for instance [Pel00]).

Timed automata are intensively studied (selected references [Alu00],
[DY96], [SV96], and [LLW95]). Their verification methods can be found
for instance in [MLAH01], [Yov98], [AJ98], [BMPY97], and [SVD97].

The definition of timed automaton in [AD94] is based on several con-
cepts, which we briefly outline.

The fundamental element is the set of clocks T , which represents the set
of real values that are increasing strictly monotonically with real-time. All
these clocks run independently, because their increasing is not controlled by
the timed automaton. It mays reset a clock τi ∈ T or block its progress, but
timed automaton does not up clocks.

The set Φ(T) of clock constraints ϕ ∈ Φ(T) is defined inductively by 3

ϕ
df
= τ ≤ c|c ≤ τ |¬ϕ|ϕ1 ∧ ϕ2 (4.19)

where τ ∈ T and c stands for some nonnegative (possible different) rational
constants. Φ(T) expressions are analogous to the ones generated by Bexp
grammar.

If we replace boolean variables in Bexp grammar by time constraints, we
would obtain similar language, because any logical function can be expressed
with the aid of ¬ and ∧ operators.

The clock constraints are employed in timed transition table [AD94, page
9], which could be considered as some replacement of δ transition function
that expresses behavior of Mealy’s automata.

3In Alur and Dill’s paper is used Φ(C) instead of Φ(T) and δ instead of ϕ. We have
changed notation to distinguish them from symbols that we gave to other elements.

124

Definition 4.9 A timed transition table A is a tuple 〈Σ, S, S0, T, E〉, where

• Σ is a finite alphabet,

• S is a finite set of states,

• S0 ⊆ S is a set of start states,

• T is a finite set of clocks, and

• E ⊆ S×S×2C×Φ(T) gives the set of transitions. An edge 〈s, s′, a, λ, ϕ〉
represents a transition from state s to state s′ on input symbol a. The
set λ ⊆ T gives the clocks to be reset with this transition, and ϕ is a
clock constraint over a set of clock variables T .

Other authors extended the definition by another elements as enabling
conditions for clocks [LLW95, page 2], which enable or disable the progress
of individual clocks. Timed automaton definition follows from the transition
table [AD94, page 10]:

Definition 4.10 A timed Büchi automaton U is a tuple 〈Σ, S, S0, T, E, F 〉,
where 〈Σ, S, S0, T, E〉 is a transition table, and F ⊆ S is a set of accepting
states.

If we replace all clock constraints by some inputs, then the timed au-
tomaton defined above will change to an automaton of Mealy’s family with
external clock modules, whose progress is controlled by auxiliary outputs as
depicted in Figure 4.5. APLCTRANS is able to compose it and convert the
result into a timed automaton.

The interesting question is certainly about the relation between PLC
software timers and their timed models. Unfortunately, the theory ends here
and engineering know-how begins. Timed model of particular timer depends
not only on its type and manufactured PLC type, but also on methods how
PLC program accesses variables related to the timer. Many timers allow
simple conversions, but more complicated models are sometimes required.

A universal model would probably exist, to which PLC timers could be
transformed, but such overall model could generate many states needlessly,
even if they are not necessary.

Because many different PLC timers exist, we have selected two most
frequent types, for which we outline the conversion of PLC to timed au-
tomaton. Timer on delay delays rising edge of its input and timer off delay
prolongs falling edge. The both timers generate binary outputs DN and TT
as shown in Figure 4.6.

Other PLC timer types are mostly derived from on and off delay timers,
with the exception of retentive timer. It is required for special processes,
whose operation could be possibly divided into several time intervals by
miscellaneous interruptions, but the total time of their run may not expire

125

Figure 4.5: Untimed Abstract PLC with External Timers

Figure 4.6: PLC Timers On Delay and Off Delay

126

a preset time. Retentive timer leads to timed automata equipped with
enabling and disabling of individual clocks. However, its conversion would
be similar.

4.4.1 Outline of APLC Conversion to Timed Automaton

Modifications Performed Before APLCTRANS

Each timer in a PLC program stands for one clock, thus the set of all clocks
is T = {τ1, . . . , τnt} where nt is the total number of timers in a program.
Any timer is primary controlled by its timer instruction, but some PLCs may
allow resetting timers by special instructions. We will call these instructions
(i.e., timer and resetting instructions) control accesses to timer τi. Resetting
clocks on the edges of a timed automaton corresponds to APLC rising or
falling edge detections (REdge or FEdge instructions).

Inserting these detection into APLC program before its composing would
hide information, which boolean expression belongs to specific timer. There-
fore, we create new boolean variable for each control access to the timer τi.
It gives the set of control accesses:

γr(τi)
df
= {ri,j ∈ B | j ∈ I, |I| = mi}

where mi represents the number of control accesses to τi. We reserve ri,1
for the timer instruction and assign ri,j , j > 1 to reset instructions. We
remember ci time constant of τ timer and replace all control accesses to
timer τi by mi instructions Store ri,j .

Let us write Γ for the set of all ri,j :

Γ =
nt⋃
i=1

γr(τi) where τi ∈ T

Notice, that each ri,j is used only once in the modified program, because
every substituted Store has different operand ri,j .

APLCTRANS Run

We have replaced all timers by operations with boolean variables, which
results in APLC program. Hence APLCTRANS can compose it to transfer
set Ĉ. Because ri,j were used only once in Store instruction, the value of
t-assignment r̂i,1 contains logical condition of timer τi input and the values
of r̂i,j , j > 1 belongs to reset instructions.

Ĉ is possible to decompose to parallel automata by the equivalences of
set of indexes, with the aid of the algorithm presented in Section 4.2, if this
is needed. We must only select such union of Di ∈ D, which includes all
variables belonging to one timer (see page 112).

127

Modification of APLCTRANS Result

To simplify modification, we replace all r̂i,j in Ĉ by canonical t-assignments
r̂′i,j and we denote the set of all r̂′i,j by Γ′ and new transfer set by Ĉ ′.

We create the domains and codomains of Ĉ ′ according to Definitions 4.2
and 4.3 (see page 97) and we add all Γ′ variables to the domain and codomain
to make them state variables. We must do that, because the domain and
codomain definition do not include canonical t-assignments.

This yields the product of APLC automaton with simple automata
shown in Figure 4.7 allowing to assign reset clock operations to the edges.

?>=<89:;0
r′i,1

++ ?>=<89:;1
¬r′i,1

kk

Figure 4.7: Automata Added for Timers

Using these modified domains and codomains of Ĉ ′ we create the au-
tomaton of Mealy’s family according to Definition 4.1. We list all its edges
and add time constraints ϕ defined by Equation 4.19.

First, we assign reset operations by replacing all r′i,j according to the
type of original instruction. The substitutions are shown in the table be-
low, where bexpi,1 stands for the value (i.e. expression) of t-assignment
r̂i,j

q
bexpi,1

y
:

reset instruction r′i,j bexpi,1 ∧ (τi := 0)
j > 1 ¬r′i,j ¬(bexpi,1)

on delay timer r′i,1 bexpi,1 ∧ (τi := 0)
¬r′i,j ¬(bexpi,1)

off delay timer r′i,1 bexpi,1

¬r′i,j ¬(bexpi,1) ∧ (τi := 0)

The automaton in Figure 4.7 is now modified to one of two automata in
Figure 4.8

?>=<89:;0
bexpi,1∧(τi:=0)

-- ?>=<89:;1
¬(bexpi,1)

mm ?>=<89:;0
bexpi,1

,, ?>=<89:;1
¬(bexpi,1)∧(τi:=0)

ll

on delay/reset off delay

Figure 4.8: Reset, On and Off Delay Timer Automata

Finally, we modify accesses to timer bits TT an DN that are tested in the

128

program. We will supposed that timer bits TT and DN are read only and
program instruction do not change them directly, for example by Store,
Set, or Res instructions. 4

We replace DN and TT timer bit by formulas [¬]1bexpi,1 � [¬]2ϕ where

• bexpi,1 is the value of r̂i,1,

• [¬]k denotes optional boolean negation,

• � is boolean operation, either ∧ or ∨, and

• ϕ is timing constraint, in which is utilized timing constant ci.

The formulas for timer bits are:
τi on delay timer DN bit (bexpi,1) ∧ (τi ≥ ci)

TT bit (bexpi,1) ∧ (τi ≤ ci)
off delay timer DN bit (bexpi,1) ∨ ¬(τi ≥ ci)

TT bit ¬(bexpi,1) ∧ (τi ≤ ci)

Minimization of Timed Automaton

We inspect the edges that come out from the same state. We search for
two edges such one contains resetting of a clock (bexp1) ∧ τi := 0, where
bexp1 is a boolean function, and the second edge contains a time constraint
(bexp1)∧(bexp2)∧(τi ≥ ci), where bexp2 is another boolean function (possibly
equal to 1).

If we locate such two edges, we delete the second one, because it is
redundant. When bexp1 reset a clock, then (τi ≥ ci) will never hold in PLC
timer.

Discussion

The formulas for representing timer operations will vary with PLC type
and the expertise is always necessary to give precise specifications for a
manufactured PLC. Therefore, we have presented this conversion only as an
outline, not an algorithm.

Further research is required to establish exacter algorithmic method,
which will applicable to wider range of PLC types without many modifica-
tions.

4Direct changing timer bits is somewhere possible on selected PLC types for some
timers, but mostly not recommended, because such non standard operations complicate
troubleshooting by more difficult orientation in a PLC program. If they were used after
all, then such timers would have required more complex models, in which each timer τi

will latch and unlatch an ordinary boolean variable instead of outputting read only DN
bit.

129

Example 4.4

We will demonstrate converting timers to a timed automaton by the following
simple example, in which SLC 5/02 TON timer detects a bad contactor opera-
tion. The ladder diagram of the program is depicted in Figure 4.9 together with
its exported PLC source code and APLC instructions.

Contactor m has the secondary contact that confirms its closing. If m was
set to 1, then m2 should be closed at most after 3 second delay, otherwise the
error must be announced by setting error bit. This bit is periodically read by
the main part of the program, which also select an proper action according to
the state of a controlled technology.

Similar error detections simplify troubleshooting and a PLC program usually
contains many timed checks. After their verification, it is sometimes possible
to remove them from PLC model or to represent all these part by one block,
which reduces the states significantly.

We proceed by creating timed automaton. The preparation phase means
replacing one on delay timer instruction by Store r1,1 and remembering its
time constant c1 = 3 [s]. The set of the clocks has one element, T = {τ1}.
Another necessary input information is the storage, on which is the program
defined, to distinguish inputs from variables stored in memory.

S = {Σ = {s1,m2, dn1}, V = {error ,m, r1,1},Ω = ∅}

Notice, that we have added two system variables to Σ — first scan signal
s1 (see page 21) and DN bit of timers. The both variables are stored in PLC
memory, but they are read only data for its programs, i.e. the inputs of our
automaton.

APLCTRANS composes the program to:

Result={ @f[1], @r11[m], error[@dn1.!m2+!s1.error] }

The @ prefixes were used for automatically created variables to distinguish them
from other program labels. The result corresponds to the transfer set:

Ĉ = {f̂reg J1K , r1,1 JmK , êrror J(dn1 ∧ ¬m2) ∨ (¬s1 ∧ error)K}

Before we build its domain and PLC codomain, we modify Ĉ to Ĉ ′ by
replacing r̂1,1 JmK by canonical t-assignment r̂′1,1

q
r′1,1

y
not to lose information

about timer variables.

Ĉ ′ = {f̂reg J1K , r̂′1,1

q
r′1,1

y
, êrror J(dn1 ∧ ¬m2) ∨ (¬s1 ∧ error)K}

dom(Ĉ ′) = {r′1,1, dn1 ,m2, s1, error}

coP (Ĉ ′) = {error}

We see that r1,1 would not be normally a state variable, because canonical
t-assignments are automatically removed by ↓ operator. So we must add r′1,1

130

APLC code SLC 5/02 PLC Comment
ladder2:
Init; SOR
And s1; XIC S:1/15 First scan after switching PLC on
Ret error; OTU B3:0/0 Reset error
Init; EOR
Init; SOR
And m; XIC I:1.0/0 Is contactor m closed?
Push; EPush 1; BST Branch start
Store r1,1; TON T4:0 1.0 3 0 on delay timer c1 = 3 seconds
TOr; Dup; ESwp NXB next branch
And dn1; XIC T4:0/DN DN bit — 3 seconds has passed
And !m2; XIO I:1.0/1 2nd contact has not closed?
Set error; OTL B3:0/0 Set error
TOr; Drop; BND branch end
Init; EOR
End; end of file

Figure 4.9: Checking Contactor M with Secondary Contact M2

131

to domain and PLC codomain to obtain automaton containing the edges for
resetting clocks.

dom(Ĉ ′) = {dn1 ,m2, s1, error} ∪ {r′1,1}

coP (Ĉ ′) = {error , r′1,1} (4.20)

Using them we create the automaton of Mealy’s family. The set of the state
variable is intersection of domain and PLC codomain

W = dom(Ĉ ′) ∩ coP (Ĉ ′) = {r′1,1, error , }

and we depict this automaton to see its edges in the upper part of Figure 4.10.
Now, we replace all ¬r′1,1 by the negated expression of r̂1,1 JmK original t-

assignment, i.e, by ¬m, and all r′1,1 are substituted by the reset operation of on
delay timer i.e., by m ∧ (τ1 := 0).

Read accesses to timer bit DN are all replaced by on timer condition r1,1 ∧
(τ1 ≥ c1, which yields m ∧ (τ1 ≥ 3). The results is depicted in the middle part
of Figure 4.10.

We see that the timed automaton contains one edge, which is never be
active in PLC, since it will not hold m ∧ (τ1 ≥ 3) in state 0, because m must
go to 1 first to active clock. Removing this edge yields final timed automaton
depicted in the bottom of Figure 4.10.

The example also demonstrates a disadvantage of the proposed conver-
sion — the result is not optimal timed automaton. The automaton could
include some redundant edges or states respectively, whose deletions are
required. This task could have very high complexity.

The improvement of outlined conversion process has remained for a fu-
ture research together with its deeper theoretical analysis.

132

ONMLHIJK0
¬m2∧dn1

,,

r′1,1

��

ONMLHIJK1
e

s1

ll

r′1,1

��
ONMLHIJK2

r
¬m2∧dn1

22

¬r′1,1

SS

ONMLHIJK3
e∧r

s1
rr

¬r′1,1

LL

⇓ time constraints

ONMLHIJK0

¬m2∧m∧(τ1≥3)

((

m∧(τ1:=0)

��

ONMLHIJK1
e

s1ll

m∧(τ1:=0)

��
ONMLHIJK2

r

¬m2∧m∧(τ1≥3)

55

¬m

SS

ONMLHIJK3
e∧r

s1
rr

¬m

LL

⇓ reducing edges

ONMLHIJK0

m∧(τ1:=0)

��

ONMLHIJK1
es1

oo

m∧(τ1:=0)

��
ONMLHIJK2

r

¬m2∧m∧(τ1≥3)

55

¬m

SS

ONMLHIJK3
e∧r

s1
rr

¬m

LL

Figure 4.10: Creation of Time Automaton

133

Chapter 5

Future Work and Conclusion

Programmable logical controllers (PLCs) have proven their worth in count-
less industrial applications, since they were designed for high hardware reli-
ability, hard environmental conditions, and efficient collecting I/O data.

But the safety of their software is an unknown element in general and
the formal validation is needed. However, before verifying any PLC program
we must convert its code into some universal language acceptable by chosen
model checker. This conversion represents necessary step for any intended
verification and its resolving opens possibilities for easier application of many
known methods and tools during the development of PLC programs.

Therefore, PLC conversion was selected as the main challenge of this
thesis. We present three contributions, which are probably novel approaches
that have not been published yet:

• APLC machine for modelling wide range of PLC programs with bit
instructions, jumps and subroutines was designed and its extension to
timer instructions was demostrated. APLC machine forms a universal
base for converting source codes of many different PLCs regardless of
their manufacture.

• New theory of transfer sets was invented and the existence of the
monoid of the transfer sets has been proved. The monoid allows asso-
ciative composition of abstract PLC programs to logical formulas that
are usually accepted by any model checker or tool in some form.

• APLCTRANS algorithm was designed that performs converting in
linear time in the size of PLC source code at the most cases, though
the converted program has an exponential complexity of its execution
time.

The advantages of our methodology (together with its remaining imper-
fections) have been demonstrated by experimental results. We believe that
our technique is general enough to be adapted for a wide range of PLCs.

134

There are many interesting avenues for future research and many lines
of further development suggest themselves. Clearly, our work has revealed
a lot of possibilities for improvements, extensions, and APLCTRANS appli-
cations. These have been already discussed in the relevant sections.

Here we list two new ideas of future development that have not been
mentioned in the previous text:

• Abstract PLC does not convert arithmetic instructions. First theo-
retical studies show that APLCTRANS could deal with this problem
with the aid of the conditional assignments.

• Some PLCs offer special sequential programming usually based on
Grafcet. Converting these programs to either automata or Petri nets
model with APLCTRANS cooperation could open possibilities for new
modelling techniques.

In sum, our preliminary results are encouraging. We hope that further
research along these and other lines will enable the potential advantages of
APLCTRANS to apply to a much wider range of PLC programs.

But in spite of this progress, our thesis still remains a small contribution
to ’hard’ task of the formal verification, where are many hard problems
waiting for efficient algorithms and much more of harder ones waiting for
revealing.

135

Appendix A

Used Definitions

In this appendix, we present a raw collection of some basic definitions even
if we assume that reader is familiar with them. They will serve us as an
overview of notations and terminology which we refer to. We hope to resolve
by them all possible ambiguities.

We denote an ordered set of integer numbers by I i.e., I
df
= {1, 2, . . . , |I|}.

Definition A.1 A binary relation R from a set X to a set Y is an arbitrary
subset of the cartesian product X × Y . If X = Y then R is called a binary
relation on the set X.

If a binary relation name has an alphabetic label, for instance R, then
belonging x, y to R is usually written as 〈x, z〉 ∈ R, but if a relation is
denoted by a special symbol, for instance ≡, that more readable form is
used as x ≡ y.

Definition A.2 A function or mapping g is a binary relation g : X → Y
from a set X to a set Y satisfying the following two properties:
(functional) 〈x, y〉 ∈ g and 〈x, z〉 ∈ g imply y = z
(total) for each x ∈ X exists at least one y ∈ Y such that 〈x, y〉 ∈ g

The set X of all admissible arguments is called the domain of g denoted by
dom(g). The set Y of all admissible values is called the codomain of g
denoted by co(g).

Traditionally, functions are written as formulas that converted some in-
put value (or values) into an output value. If g is the name for a function
and x is a an input value, then g(x) denotes the output value corresponding
to x under the rule g. We will always prefer this form to relation notation
〈x, y〉 ∈ g. An input value is also called an argument of the function, and
an output value is called a value of the function.

In case of denoting a function with one or two arguments by a special
non alphabetic symbol, for instance ◦ or ⊥, such functions will be expressed

136

as an operator. For example, instead of writing z = ◦(x, y) or z =⊥ (x)
where x, y, and z are some variables, we will write z = x ◦ y or z =⊥ x and
call ⊥ as unary operator and ◦ as binary operator.

Proposition A.1 Let g be a function with finite domain and codomain. If
|dom(g)| = |cod(g)| then g is bijective mapping from dom(g) → co(g).

Proof: Suppose that x, y ∈ dom(g)), x 6= y have equal output values
g(x) = g(y) which satisfy g(x), g(y) ∈ co(g). Because functions map each
argument to exactly one output value (total and functional property), the
sets dom(g) and co(g) cannot have the same cardinality. We have a contra-
diction. 2

The bijective mappings are defined occasionally as those satisfying equal-
ity of the cardinalities of their domains and codomains.

Definition A.3 A binary relation R on a set X is a partial ordering if for
all x, y, z ∈ X:
(reflexivity) 〈x, x〉 ∈ R
(antisymmetry) 〈x, y〉 ∈ R and 〈y, x〉 ∈ R imply x = y
(transitivity) 〈x, y〉 ∈ R and 〈y, z〉 ∈ R imply 〈x, z〉 ∈ R

Ordering R is called total ordering if it satisfies: for every x, y ∈ X we have
〈x, y〉 ∈ R and 〈y, x〉 ∈ R.

Definition A.4 A binary relation R on a set X is called equivalence rela-
tion if for all x, y, z ∈ X:
(reflexivity) 〈x, x〉 ∈ R
(symmetry) 〈x, y〉 ∈ R iff 〈y, x〉 ∈ R
(transitivity) 〈x, y〉 ∈ R and 〈y, z〉 ∈ R imply 〈x, z〉 ∈ R

A set R̃(x)
df
= {y ∈ X | 〈x, y〉 ∈ R} is called equivalence class corresponding

to X and set of all equivalence classes X/R
df
= {R̃(x) | x ∈ X} is called the

factor set.

Two trivial equivalences always exist on any set X. Identical equivalence

∆X
df
= {〈x, x〉 | x ∈ X} (A.1)

and universal equivalence {〈x, y〉 | x, y ∈ X}. The other equivalences are
called non trivial equivalences.

Definition A.5 A set of nonempty subsets {Xi | i ∈ I} of a set X is called
a decomposition of X if X =

⋃
i∈I Xi and Xi ∩Xj = ∅ for all i, j ∈ I, i 6=

j.

137

Proposition A.2 Let R be an equivalence on a set X then the factor set
X/R = {R̃(x) | x ∈ X} is a decomposition of the set X.

Proof: For all x ∈ R is R̃(x) 6= ∅ because x ∈ R̃(x) (reflexivity of R) and
therefore X ⊆

⋃
x∈X R̃(x). We will show that R̃(x) ∩ R̃(y) 6= ∅ implies

R̃(x) = R̃(y). Let, on a contrary, be z ∈ R̃(x) ∩ R̃(y) then for all v ∈ R̃(x)
it holds 〈v, x〉 ∈ R and also 〈z, x〉 ∈ R, therefore 〈v, z〉 ∈ R (symmetry
and transitivity). Applying transitivity we can derive from 〈z, y〉 ∈ R that
〈v, y〉 ∈ R i.e., v ∈ R̃(y). It implies that R̃(x) ⊆ R̃(y) and according to
symmetry of R also R̃(x) ⊇ R̃(y), therefore R̃(x) = R̃(y) and X/R is a
decomposition of X. 2

Definition A.6 System of equivalences Ri, i = I, |I| = n on set X is called
separating, if it satisfies

n⋂
i=1

Ri = {〈x, x〉 | x ∈ X} (A.2)

Definition A.7 (Semigroup) A semigroup is a pair (M,�), where M is
a set and � is a binary operation on M , obeying the following rules:
(closure) a, b ∈M implies a� b ∈M
(associativity) for all a, b, c ∈M that holds (a� b)� c = a� (b� c)

Definition A.8 (Monoid) A monoid is a semigroup (M,�) with an iden-
tity element e that satisfies the following rule:
(identity) for all a ∈M, a� e = e� a = a

Definition A.9 A lattice is a set L together with two binary operations ∧
and ∨ such that for any a, b, c ∈ L
(idempotency) a ∨ a = a a ∧ a = a
(commutativity) a ∨ b = b ∨ a a ∧ b = b ∧ a
(associativity) a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c
(absorption) a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a

Definition A.10 A Boolean algebra is a lattice (A,∨,∧) with the following
four additional properties:

(bounded below) ∃ 0 ∈ A a ∨ 0 = a ∀a ∈ A
(bounded above) ∃ 1 ∈ A a ∧ 1 = a ∀a ∈ A
(distributive law) ∀a, b, c ∈ A (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
(complements) ∀a ∈ A ∃¬a ∈ A a ∨ ¬a = 1 and a ∧ ¬a = 0

It directly follows from axioms above that the smallest element 0 and the
largest element 1 are unique and every element has only one complement.

138

Definition A.11 (Kleene-closure) Let E be a finite set of elements. Let
us denote by E∗ the set of all finite strings of elements of E, including
empty string ε; the operation ()∗ is called Kleene-closure. The set E is
called alphabet and any subset L ⊂ E∗ is called a language defined over
alphabet E.

Observe that the set E∗ is countably infinite whenever E is at most
countable, since it contains strings of arbitrarily long length. For example,
if E = {0, 1}, then its Kleene-closure {0, 1}∗ is the set with elements E∗ =
{ε, 0, 1, 00, 01, 10, 11, 000, . . .}. The language without empty string is usually

denoted by E+ df
= E∗ − {ε}.

Definition A.12 (Concatenation of strings) Let L be a language L ⊆
E∗ and s, t ∈ L two strings. Let us denote by . the binary operation de-
fined on E∗ that performs the concatenation of strings, s.t is the new string
consisting of the elements s immediately followed by the elements of in t.

The empty string ε is the identity element of concatenation: s.ε = ε.s = s
for any string s.

Definition A.13 Let L be a language L ⊆ E∗ and s ∈ L. If s = t.u.v
where . denote the operation of concatenation of strings then:

• t is called a prefix,

• u is called a substring, and

• v is called a suffix of s.

139

Bibliography

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[AFS98] Alexander Aiken, Manuel Fähndrich, and Zhendong Su. De-
tecting races in relay ladder logic programs. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 4th
International Conference, TACAS’98, pages 184–200, 1998.

[AH97] Henrik Reif Andersen and Henrik Hulgaard. Boolean expression
diagrams. In LICS, IEEE Symposium on Logic in Computer
Science, 1997.

[AJ98] P. Aziz Abdulla and B. Jonsson. Verifying networks of timed
processes. Lecture Notes in Computer Science, 1384:298–312,
1998.

[Alu00] Rajeev Alur. Verification of Digital and Hybrid Systems, chap-
ter Timed Automata, pages 233–264. Springer-Verlag Berlin,
2000.

[And94] Mark Andrews. C++ Windows NT Programming. MT Books,
1994.

[And97] Henrik Reif Andersen. An introduction to binary decision dia-
grams. Technical report, Department of Information Technol-
ogy, Technical University of Denmark, October 1997.

[AT98a] Stuart Anderson and Konstantinos Tourlas. Design for proof:
An approach to the design of domain-specific languages. In The
Third FMICS Workshop, May 1998.

[AT98b] Stuart Anderson and Konstantinos Tourlas. Diagrams and pro-
gramming languages for programmable controllers. Formal As-
pect of Computing, 10 (5-6):452–468, 1998.

[BBF+01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and P. Schnoebelen. Systems and Software Verifi-
cation. Springer, 2001.

140

[BHLL00] Sebastien Bornot, Ralf Huuck, Ben Lukoschus, and Yassine
Lakhnech. Utilizing static analysis for programmable logic
controllers. In 4th International Conference on Automation of
Mixed Processes: Hybrid Dynamic Systems, September 18–19
2000.

[BHŠ00] Jǐŕı Bayer, Zdeněk Hanzálek, and Richard Šusta. Logical sys-
tems for control engineering. CTU-FEE Prague, 2000. In Czeck
lang.

[BM00] Ed Brinksma and Angelika Mader. Verification and optimiza-
tion of a PLC control schedule. In 7th SPIN Workshop, volume
1885 of Lecture Notes in Computer Science. Springer Verlag,
2000.

[BMPY97] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress
in the symbolic verification of timed automata. In Computer-
Aided Verification, CAV’97, Israel, Lecture Notes in Computer
Science. Springer-Verlang, 1997.

[BS90] Ravi B. Boppana and Michael Sipser. Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A),
chapter The Complexity of Finite Functions, pages 757–804.
Elsevier and MIT Press, 1990.

[CHB01] Colin Chambers, Mike Holcombe, and Judith Barnard. In-
troducing X-machine models to verify PLC ladder diagrams.
Computers in Industry, 45:277–290, July 2001.

[CL99] C. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1999.

[Com] International Electrotechnical Commission. International Stan-
dard 1131, Programmable Controllers. Part 3: Programming
Languages. 1993.

[DCR+00] O. De Smet, S. Couffin, O. Rossi, G. Canet, J.-J. Lesage, Ph.
Schnoebelen, and H. Papini. Safe programming of PLC using
formal verification methods. In Proc. 4th Int. PLCopen Conf.
on Industrial Control Programming (ICP’2000), Utrecht, The
Netherlands, Oct. 2000, pages 73–78. PLCOpen, Zaltbommel,
The Netherlands, 2000.

[DFMV98] Henzing Dierks, Ansgar Fehnker, Angelika Mader, and Frits
Vaandrager. Operational and logical semantics for polling real-
time systems. In FTRTFT’98. Springer Verlag, 1998.

141

[DFT01] Henning Dierks, Hans Fleischhack, and Josef Tapken.
Moby/PLC tutorial. Departments of Theoretical Informatics,
Oldenburg, 2001.

[Die97] Henning Dierks. Synthesizing controllers from real-time specifi-
cations. In Tenth International Symposium on System Synthe-
sis (ISSS ‘97), pages 126–133. IEEE Computer Society Press,
1997.

[Die00] Henning Dierks. Specification and Verification of Polling Real-
Time Systems. PhD thesis, Carl-von-Ossietzky Universität
Oldenburg, 2000.

[DK90] Marie Demlová and Václav Koubek. Algebraic theory of au-
tomata. SNTL Praha, 1990. Printed only in Czech language.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The Tool
Kronos, chapter 0, page 0. Springer-Verlag, lecture notes in
computer science 1066 edition, 1996.

[DY96] C. Daws and S. Yovine. Reducing the number of clock vari-
ables of timed automata. In IEEE Real-Time Systems Sympo-
sium, RTSS’96, Washington, DC, USA. IEEE Computer Soci-
ety Press, 1996.

[FH01a] Petr Fǐser and Jan Hlavička. BOOM - a heuristic boolean min-
imizer. In International Conference on Computer-Aided De-
sign ICCAD 2001, San Jose, California (USA), pages 439–442,
2001.

[FH01b] Petr Fǐser and Jan Hlavička. A heuristic method of two-
level logic synthesis. In The 5th World Multiconference on
Systemics, Cybernetics and Informatics SCI’2001, Orlando,
Florida (USA), volume II, pages 283–288, 2001.

[FH01c] Petr Fǐser and Jan Hlavička. Implicant expansion method used
in the BOOM minimizer. In IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop (DDECS’01), Gyor
(Hungary), pages 291–298, 2001.

[FH01d] Petr Fiser and Jan Hlavicka. On the use of mutations in boolean
minimization. In Euromicro Symposium on Digital Systems
Design, Warsaw, pages 300–305, 2001.

[Fit90] John S. Fitzgerald. Case Studies in Systematic Software Devel-
opment, chapter 5, pages 127–162. Prentice-Hall International,
1990.

142

[Fra92] Nissim Francez. Program Verification. Addison-Wesley Pub-
lishers Ltd, 1992.

[FŠ92] Jindřich Fuka and Richard Šusta. Processing visual information
in industrial control with the aid of M module. Automatization,
9:263–266, 1992. In Czech lang.

[Gra96] Paul Graham. ANSI Common Lisp. Prentice-Hall, 1996.

[Grö99] Clemens Gröpl. Binary Decision Diagrams for Random Bool-
ean Functions. PhD thesis, Humboldt Universite Berlin, 1999.

[Gun92] Carl A. Gunter. Semantics of Programming Languages, Struc-
tures and Techniques. The MIT Press, Massachusetts Institute
of Tecnology, 1992.

[HD93] Alan J. Hu and David L. Dill. Reducing BDD size by exploiting
functional dependencies. In 30th ACM/IEEE Design Automa-
tion Conference, Dallas, TX, USA, pages 266–271, June 1993.

[Hol97] Gerard J. Holzmann. Basic Spin Manual. Bell Laboratories,
1997.

[HP85] D. Harel and A. Pnueli. On the development of reactive sys-
tems. In Logic and Models of Concurrent Systems, volume 13
of NATO ASI Series F. Springer-Verlag, 1985.

[Hug89] Thomas A. Hughes. Programmable Controlles. Instrument So-
ciety of America, 1989.

[HWA97] Henrik Hulgaard, Poul Frederick Williams, and Henrik Reif
Andersen. Combinational logic-level verification using boolean
expression diagrams. In 3rd International Workshop on Appli-
cations of the Reed-Muller Expansion in Circuit Design, 1997.

[HWA99] Henrik Hulgaard, Poul Frederick Williams, and Henrik Reif
Andersen. Equivalence checking of combinational circuits using
boolean expression diagrams. IEEE Transactions of Computer-
Aided Design, 18(7), July 1999.

[Int92] International Electrotechnical Commision. IEC 848 Grafcet,
1992.

[LLW95] François Laroussinie, Kim G. Larsen, and Carsten Weise.
From timed automata to logic - and back. Technical Report
RS-95-2, BRICS, jan 1995. 21 pp. Accessible through url:
http://www.brics.aau.dk/BRICS.

143

[LPW97] Kim Guldstrand Larsen, Paul Pettersson, and Yi Wang. Up-
paal in a nutshell. International Journal on Software Tools for
Technology Transfe, 0(1 (1+2)):134–152, September 1997. 0.

[LT93] Nancy Leveson and Clark S. Turner. An investigation of the
therac-25 accidents. IEEE Computer, 26(7):18–41, July 1993.

[Mad00a] Angelika Mader. A classification of PLC models and appli-
cations. In WODES 2000: 5th Workshop on Discrete Event
Systems, Gent, Belgium, August 21–23 2000.

[Mad00b] Angelika Mader. Precise timing analysis of PLC applications
two small examples. Technical report, University of Nijmegen,
2000.

[McM93] Kenneth L. McMillan. Symbolic Model Checking, An approach
to the state explosion problem. PhD thesis, Carnegie Mellon
University, School of Computer Scienc, 1993.

[McM97] K. L. McMillan. Getting started with SMV. Cadence Berke-
ley Labs, 1997. Document available at URL: http://www-
cad.eecs.berkeley.edu/ kenmcmil/.

[McM00] Kenneth L. McMillan. Verification of Digital and Hybrid Sys-
tems, chapter Compositional Systems and Methods, pages 138–
151. Springer-Verlag Berlin, 2000.

[Min99] Mark Minas. Creating semantic representations of diagrams.
In AGTIVE, pages 209–224, 1999.

[MLAH01] Jesper Moeller, Jakob Lichtenberg, Henrik Andersen, and Hen-
rik Hulgaard. Fully symbolic model checking of timed systems
using difference decision diagrams. In Alessandro Cimatti and
Orna Grumberg, editors, Electronic Notes in Theoretical Com-
puter Science, volume 23. Elsevier Science Publishers, 2001.

[MW99] Angelika Mader and Hanno Wupper. Timed automaton models
for simple programmable logic controllers. In Proceedings of
Euromicro Conference on Real-Time Systems 1999, York, UK,
1999.

[MW00] Angelika Mader and Hanno Wupper. What is the method in
applying formal methods to plc applications? In ADPM 2000,
2000.

[NN99] Hanne Riis Nielson and Flemming Nielson. Semantics with
Applications, A Formal Introduction. John Wiley and Sons,
1999.

144

[Nov01] Radim Novotný. Distributed Control Systems. PhD thesis,
Faculty of Electrical Engineering, Prague, 2001. In Czech lang.

[OCVSV98] Arlindo L. Oliveira, Luca P. Carloni, Tiziano Villa, and Al-
berto L. Sangiovanni-Vincentelli. Exact minimization of binary
decision diagrams using implicit techniques. IEEE Transac-
tions on Computers, 47(11), 1998.

[OD98] Ernst-Rudiger Olderog and Henning Dierks. Decomposing
real-time specifications. Lecture Notes in Computer Science,
1536:465–489, 1998.

[Pel00] Doron Peled. Verification of Digital and Hybrid Systems, chap-
ter Model Checking Using Automata Theory, pages 55–79.
Springer-Verlag Berlin, 2000.

[Ram99] John D. Ramsdell. The tail-recursive Machine. Journal of
Automated Reasoning, 23(1):43–62, 1999.

[RK98] M. Rausch and B. H. Krogh. Formal verification of PLC pro-
grams. In American Control Conference, Philadelphia, PA,
USA, 1998.

[Roc98] Rockwell Automation. PLC 5 Programmable Controllers, In-
struction set reference, 1998. On-line manual available at URL:
http://www.ab.com/manuals/cp/.

[Roc01a] Rockwell Automation. Logix5000 Controllers Common Proce-
dures, Publication 1756-PM001D-EN-P, 2001. On-line manual
available at URL: http://www.ab.com/manuals/cl/.

[Roc01b] Rockwell Automation. SLC500 Instruction Set, Reference
Manual. Publication 1747-RM001C-EN-P, 2001. On-line man-
ual available at URL: http://www.ab.com/manuals/cp/.

[RS00] O. Rossi and Ph. Schnoebelen. Formal modeling of timed func-
tion blocks for the automatic verification of Ladder Diagram
programs. In Proc. 4th Int. Conf. Automation of Mixed Pro-
cesses: Hybrid Dynamic Systems (ADPM’2000), Dortmund,
Germany, Sept. 2000, pages 177–182. Shaker Verlag, Aachen,
Germany, 2000.

[Sie02] Siemens AG. S7-200 Programmable Controller System Manual
Edition, 2002. System Manual Order number: 6ES7298-8FA22-
8BH0.

[Slo94] M. Sloman. Distributed Control. Prentice Hall, 1994.

145

[SS98] Mary Sheeran and Gunnar St̊almarck. A tutorial on
St̊almarck’s proof procedure for propositional logic. In
G. Gopalakrishnan and P. Windley, editors, Proceedings 2nd
Intl. Conf. on Formal Methods in Computer-Aided Design, FM-
CAD’98, Palo Alto, CA, USA, 4–6 Nov 1998, volume 1522,
pages 82–99. Springer-Verlag, Berlin, 1998.

[SSL+92] M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: system for sequential circuit
synthesis. Technical report, 1992.

[Šus93] Richard Šusta. Visual information in industrial control systems.
In Informatics in CIM, Prague, 1993.

[Šus99] Richard Šusta. Programming for Control Engineering in Win-
dows. CTU-FEE Prague, 1999. In Czeck lang.

[Šus02] Richard Šusta. Paralel abstraction of PLC program. In The 5th
International Scientific -Technical Conference Process Control
2002, Řı́p 2002, June 2002. CD R058 1-13.

[Šus03] Richard Šusta. APLCTRANS algorithm for PLC verification.
In 14th International Conference Process Control 2003, Štrbské
Pleso, Slovakia, June 2003. Proceedings ISBN 80-227-1902-1,
CD-ROM.

[SV96] Springintveld and Vaandrager. Minimizable timed automata.
In S: Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems: International Symposium Organized Jointly with the
Working Group Provably Correct Systems – ProCoS. LNCS,
Springer-Verlag, 1996.

[SVD97] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio.
Testing timed automata. Technical Report CSI-R9712, Univer-
sity of Nijmegen, Computing Science Institute, 1997.

[TD98] Josef Tapken and Henning Dierks. Moby/PLC - graphical de-
velopment of PLC-automata. In A.P. Ravn and H. Rischel, ed-
itors, Proceedings of FTRTFT’98, volume 1486 of LNCS, pages
311–314. Springer Verlag, 1998.

[Tou97] Konstantinos Tourlas. An assessment of the EC 1131–3 stan-
dard on languages for programmable controllers. In Peter
Daniel, editor, SAFECOMP97: the 16th International Con-
ference on Computer Safety, Reliability and Security York, ,
pages 210–219. Springer, September 1997.

146

[Tou00] Konstantinos Tourlas. Diagrammatic Representations in
Domain-Specific Languages. PhD thesis, Univesity of Edin-
burgh, 2000.

[Wil00] Poul Frederick Williams. Formal Verification Based on Boolean
Expression Diagrams. PhD thesis, DTU Tryk, Lyngby, 2000.

[YBO+98] Bwolen Yang, Randal E. Bryant, David R. O’Hallaron, Armin
Biere, Olivier Coudert, Geert Janssen, Rajeev K. Ranjan, and
Fabio Somenzi. A performance study of BDD-based model
checking. In Proc. of the Formal Methods on Computer-Aided
Design (November 1998), pages 255–289, 1998.

[Yov98] S. Yovine. Embedded Systems, chapter Model-checking Timed
Automata, page 0. Lecture Notes in Computer Science 1494.
0, 1998.

147

Index

()∗, 139
:: - linking lists, 36
Epop , 76
Epush , 76
Estack , 76
I, 136
P |= Φ, 106
Rα(B ⊆W), 109
W [i], 108
X/R̃(), 137
∆X , 137
Ω, 32
Σ, 32
◦, 57
δP , 32
↓, 61
∅ ↑ S, 61
γr(τ), 127
7→, 37
M(BPLC), 32
M(Ĉ), 101
B, 31
Gbexp, 35
α(.), 31
dom(bexp), 54
dom(b̂JbexpK), 54
ix(B ⊆W), 108
ν - empty list, 36
ω-automaton, 124
≺, 42
AProgram, 42
Bexp+, 35
BPLC , 32
bexp, 35
co(b̂JbexpK), 54
co(̂.), 97

dom(̂.), 97
freg , 35
〈C, freg , E, S,D〉, 35
JbKS, 36
SC+

H , 40∏̂
, 70

b̂JbexpK, 54
ÊS , 61
Ŝ(S) ↓, 62
Ŝ(S) ↑ S, 62
Ŝ(S), 55
Ŝ(S/x), 58
Θ̂(.)S , 63
ĉoP (̂.), 98
d̂omP (̂.), 98
σ-well-designed, 26
↑, 61
ε, 139
�, 64
B, 37
=̂, 55, 62
X̂ ↓, 61
X̂ ↑ S, 61
∈̂, 56
Â(S), 64
Â(S/x), 60
Ĝ(S/x), 59
M̂(S), 69
B̂(S), 54̂6=, 55, 62
/̂∈, 56
R̃(), 137
R̃(x̂JbexpK), 55
R̃(X̂), 63
R̃(X̂/x), 60

148

’ABlock’, 42
’AProgram’, 42
’AStatement’, 42
label, 42

ABlock, 42
alphabet, 139
APLC

And, 38, 42, 75
Drop, 39, 42, 76
Dup, 39, 42, 76
EPush, 39, 42, 76
ESwp, 39, 42, 76
End, 38, 42, 75
FEdge, 38, 42, 75
FSwp, 39, 42, 76
Init, 38, 42, 75
Jpc, 38, 42, 75
Jp, 38, 42, 75
Jsc, 38, 42, 75
Js, 38, 42, 75
Load, 38, 42, 75
Not, 38, 42, 75
Or, 38, 42, 75
Push, 39, 42, 76
REdge, 38, 42, 75
Res, 38, 42, 75
Set, 38, 42, 75
Store, 38, 42, 75
TAnd, 38, 42, 75
TOr, 38, 42, 75
algorithm, 73
code, 35
compilation, 43
configuration, 35, 37
deterministic machine, 40
instruction step, 40
machine, 35
nesting limit, 49
next instruction, 39
step, 40
successor, 40
terminal scan, 40
termination, 44

top instruction, 39
APLC scan, 40
APLCTRANS, 73
argument, 136
AStatement, 42
Automaton

ω, 124
Büchi, 124
congruence of automaton, 107
generated by AProgram, 101
generated by binary PLC, 32
Muller, 124
parallel composition, 106
state factor, 107
state parallel composition, 106

automaton congruence of automa-
ton, 107

canonical, 54
cartesian product without synchro-

nization, 106
co(), 136
codomain, 54, 97, 98, 136

PLC, 98
ComposeTS, 78
compositional production, 70
compositional verification, 106
concurrent substitution, 56
congruence, 107
correctness

logical, 25
PLC, 25
time, 25

decomposition
non trivial, 107
state parallel, 107

decomposition of a set, 138
dom(), 136
domain, 54, 97, 98, 136

PLC, 98
dump, 35

equivalence, 137
identical, 137

149

non trivial, 137
trivial, 137
universal, 137

equivalence class, 137
equivalence on set of indexes, 108
evaluation stack, 35
EXPTIME, 49

factor set, 137
first scan, 21, 22, 130
function, 136

argument, 136
value, 136

head of list, 36

Kleene-closure, 139

language, 139
list, 36
LOOP, 77
LOOPFN, 78

mapping, 136
monoid, 138

naive algorithm, 53

O(), 49
operator, 137
ordering

partial, 137
total, 137

P-problem, 49
PLC

binary, 32
PLC model

abstract, 27
explicit, 27
implicit, 27
static, 27

prefix, 139
prefix of list, 36
process control

logical control, 15

supervising, 15
technological process, 15

RSLogix 5, 79

scan
input, 19
output, 20
program, 20

SECD, 34
semigroup, 138
separating equivalences, 109
sequence, 40
state factor automaton, 107
storage

APLC machine, 35
sublist, 36
substring, 139
suffix, 139

t-assignment, 52, 54
associative, 58
Boolean algebra, 60
boolean operations, 60
canonical, 54
codomain, 54
domain, 54
equivalence relation, 55
semigroup, 59

tail of list, 36
task

continuous, 20
event-driven, 21
periodic, 20
sequential, 21

timed automaton
control access, 127

timers, 28, 124, 125
transfer set, 55

associativity, 66
bijective mapping, 62
Boolean algebra, 64
boolean operations, 63
branching, 71
canonical, 61

150

codomain, 97
composition, 64
compression, 61
domain, 97
equivalence, 62
extension, 61
monoid, 69
partial composition, 71

value, 136

watch dog timer, 50

151

